@article{gookin_hartley_aicher_mathews_cullen_cullen_callahan_stowe_seiler_jacob_et al._2023, title={Gallbladder microbiota in healthy dogs and dogs with mucocele formation}, volume={18}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0281432}, abstractNote={To date studies have not investigated the culture-independent microbiome of bile from dogs, a species where aseptic collection of bile under ultrasound guidance is somewhat routine. Despite frequent collection of bile for culture-based diagnosis of bacterial cholecystitis, it is unknown whether bile from healthy dogs harbors uncultivable bacteria or a core microbiota. The answer to this question is critical to understanding the pathogenesis of biliary infection and as a baseline to exploration of other biliary diseases in dogs where uncultivable bacteria could play a pathogenic role. A pressing example of such a disease would be gallbladder mucocele formation in dogs. This prevalent and deadly condition is characterized by excessive secretion of abnormal mucus by the gallbladder epithelium that can eventually lead to rupture of the gallbladder or obstruction of bile flow. The cause of mucocele formation is unknown as is whether uncultivable, and therefore unrecognized, bacteria play any systematic role in pathogenesis. In this study we applied next-generation 16S rRNA gene sequencing to identify the culture-negative bacterial community of gallbladder bile from healthy dogs and gallbladder mucus from dogs with mucocele formation. Integral to our study was the use of 2 separate DNA isolations on each sample using different extraction methods and sequencing of negative control samples enabling recognition and curation of contaminating sequences. Microbiota findings were validated by simultaneous culture-based identification, cytological examination of bile, and fluorescence in-situ hybridization (FISH) performed on gallbladder mucosa. Using culture-dependent, cytological, FISH, and 16S rRNA sequencing approaches, results of our study do not support existence of a core microbiome in the bile of healthy dogs or gallbladder mucus from dogs with mucocele formation. Our findings further document how contaminating sequences can significantly contribute to the results of sequencing analysis when performed on samples with low bacterial biomass.}, number={2}, journal={PLOS ONE}, author={Gookin, Jody L. and Hartley, Ashley N. and Aicher, Kathleen M. and Mathews, Kyle G. and Cullen, Rachel and Cullen, John M. and Callahan, Benjamin J. and Stowe, Devorah M. and Seiler, Gabriela S. and Jacob, Megan E. and et al.}, year={2023}, month={Feb} } @article{gookin_strong_bruno-barcena_stauffer_williams_wassack_azcarate-peril_estrada_seguin_balzer_et al._2022, title={Randomized placebo-controlled trial of feline-origin Enterococcus hirae probiotic effects on preventative health and fecal microbiota composition of fostered shelter kittens}, volume={9}, ISSN={["2297-1769"]}, url={https://doi.org/10.3389/fvets.2022.923792}, DOI={10.3389/fvets.2022.923792}, abstractNote={IntroductionDiarrhea is the second most common cause of mortality in shelter kittens. Studies examining prevention strategies in this population are lacking. Probiotics are of particular interest but studies in cats are largely limited to healthy adults or those with induced disease. Only one study in domestic cats describes the use of host-derived bacteria as a probiotic. We previously identified Enterococcus hirae as a dominant species colonizing the small intestinal mucosa in healthy shelter kittens. Oral administration of a probiotic formulation of kitten-origin E. hirae (strain 1002-2) mitigated the increase in intestinal permeability and fecal water loss resulting from experimental enteropathogenic E. coli infection in purpose-bred kittens. Based on these findings, we hypothesized that administration of kitten-origin E. hirae to weaned fostered shelter kittens could provide a measurable preventative health benefit.MethodsWe conducted a randomized, placebo-controlled, blinded clinical trial to determine the impact of a freeze-dried E. hirae probiotic on body weight gain, incidence of diarrhea, carriage of potential diarrheal pathogens, and composition of the intestinal microbiota in weaned fostered shelter kittens.ResultsOne-hundred thirty kittens completed the study. Fifty-eight kittens received the probiotic and 72 received the placebo. There were no significant differences in age, weight upon initiation of the study, number of days in the study, average daily gain in body weight, or weight at completion of the study. Kittens treated with E. hirae were 3.4 times less likely to develop diarrhea compared to kittens treated with placebo (odds ratio = 0.294, 95% CI 0.109–0.792, p = 0.022). A significant impact of E. hirae was not observed on the presence or abundance of 30 different bacterial, viral, protozoal, fungal, algal, and parasitic agents in feces examined by qPCR. With exception to a decrease in Megamonas, administration of the E. hirae probiotic did not alter the predominant bacterial phyla present in feces based on 16S rRNA gene amplicon sequencing.DiscussionDecreased incidence of diarrhea associated with preventative administration of E. hirae to foster kittens supports a rationale for use of E. hirae for disease prevention in this young population at high risk for intestinal disease though additional studies are warranted.}, journal={FRONTIERS IN VETERINARY SCIENCE}, author={Gookin, Jody L. L. and Strong, Sandra J. J. and Bruno-Barcena, Jose M. and Stauffer, Stephen H. H. and Williams, Shelby and Wassack, Erica and Azcarate-Peril, M. Andrea and Estrada, Marko and Seguin, Alexis and Balzer, Joerg and et al.}, year={2022}, month={Nov} } @article{perez-diaz_hayes_medina_webber_butz_dickey_lu_azcarate-peril_2019, title={Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl}, volume={77}, ISSN={["1095-9998"]}, DOI={10.1016/j.fm.2018.08.003}, abstractNote={Limited documentation of the cucumber fermentation microbiome has impeded the understanding of the role of microbes on the quality of finished products. We characterized the microbiome of fresh and fermented cucumber samples using culture dependent and independent techniques, with an emphasis on the non-lactic acid bacteria (non-LAB) population. Insubstantial microbiome variations were observed among fresh cucumber types with Rhizobium (31.04%), Pseudomonas (14.08%), Pantoea (9.25%), Stenotrophomonas (6.83%), and Acinetobacter (6.5%) prevailing. The relative abundance of LAB remained below 0.4% and 4.0% on fresh cucumbers and day 3 of the fermentations brined with 6% sodium chloride, respectively. Fermentation cover brine samples collected on day 1 harbored Pseudomonas, Pantoea, Stenotrophomonas, Acinetobacter, Comamonas, Wautersiella, Microbacterium, Flavobacterium, Ochrobactrum and the Enterobacteriaceae, Citrobacter, Enterobacter and Kluyvera. Plate counts for presumptive Klebsiella and Pseudomonas from fermentation cover brine samples reached 2.80 ± 0.36 and 2.78 ± 0.83 log of CFU/mL, respectively, in 30% and 60% of the nine tanks scrutinized with selective media. Both genera were found in cover brine samples with pH values at 4.04 ± 0.15. We aim at elucidating whether the low relative abundance of non-LAB in commercial cucumber fermentations, in particular Pseudomonas and Enterobacteriaceae, impacts the quality of fermented cucumbers.}, journal={FOOD MICROBIOLOGY}, author={Perez-Diaz, Ilenys M. and Hayes, Janet S. and Medina, Eduardo and Webber, Ashlee M. and Butz, Natasha and Dickey, Allison N. and Lu, Zhongjing and Azcarate-Peril, Maria A.}, year={2019}, month={Feb}, pages={10–20} }