@article{macculloch_browning_bedoya_mcbride_abdulmojeed_dedesma_goodson_rosen_chekmenev_yen_et al._2023, title={Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-13C]pyruvate in vivo}, volume={16-17}, ISSN={["2666-4410"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85168097895&partnerID=MN8TOARS}, DOI={10.1016/j.jmro.2023.100129}, abstractNote={Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.}, journal={JOURNAL OF MAGNETIC RESONANCE OPEN}, author={Macculloch, Keilian and Browning, Austin and Bedoya, David O. Guarin and Mcbride, Stephen J. and Abdulmojeed, Mustapha B. and Dedesma, Carlos and Goodson, Boyd M. and Rosen, Matthew S. and Chekmenev, Eduard Y. and Yen, Yi-Fen and et al.}, year={2023}, month={Dec} } @article{adelabu_tomhon_kabir_nantogma_abdulmojeed_mandzhieva_ettedgui_swenson_krishna_theis_et al._2021, title={Order-Unity C-13 Nuclear Polarization of [1-C-13]Pyruvate in Seconds and the Interplay of Water and SABRE Enhancement}, volume={11}, ISSN={["1439-7641"]}, url={https://doi.org/10.1002/cphc.202100839}, DOI={10.1002/cphc.202100839}, abstractNote={Abstract}, number={2}, journal={CHEMPHYSCHEM}, publisher={Wiley}, author={Adelabu, Isaiah and TomHon, Patrick and Kabir, Mohammad S. H. and Nantogma, Shiraz and Abdulmojeed, Mustapha and Mandzhieva, Iuliia and Ettedgui, Jessica and Swenson, Rolf E. and Krishna, Murali C. and Theis, Thomas and et al.}, year={2021}, month={Dec} } @article{tomhon_abdulmojeed_adelabu_nantogma_kabir_lehmkuhl_chekmenev_theis_2021, title={Temperature Cycling Enables Efficient C-13 SABRE-SHEATH Hyperpolarization and Imaging of [1-C-13]-Pyruvate}, volume={12}, ISSN={["1520-5126"]}, url={https://doi.org/10.1021/jacs.1c09581}, DOI={10.1021/jacs.1c09581}, abstractNote={Molecular metabolic imaging in humans is dominated by positron emission tomography (PET). An emerging nonionizing alternative is hyperpolarized MRI of 13C-pyruvate, which is innocuous and has a central role in metabolism. However, similar to PET, hyperpolarized MRI with dissolution dynamic nuclear polarization (d-DNP) is complex costly, and requires significant infrastructure. In contrast, Signal Amplification By Reversible Exchange (SABRE) is a fast, cheap, and scalable hyperpolarization technique. SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) can transfer polarization from parahydrogen to 13C in pyruvate; however, polarization levels remained low relative to d-DNP (1.7% with SABRE-SHEATH versus ≈60% with DNP). Here we introduce a temperature cycling method for SABRE-SHEATH that enables >10% polarization on [1-13C]-pyruvate, sufficient for successful in vivo experiments. First, at lower temperatures, ≈20% polarization is accumulated on SABRE catalyst-bound pyruvate, which is released into free pyruvate at elevated temperatures. A kinetic model of differential equations is developed that explains this effect and characterizes critical relaxation and buildup parameters. With the large polarization, we demonstrate the first 13C pyruvate images with a cryogen-free MRI system operated at 1.5 T, illustrating that inexpensive hyperpolarization methods can be combined with low-cost MRI systems to obtain a broadly available, yet highly sensitive metabolic imaging platform.}, number={1}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, publisher={American Chemical Society (ACS)}, author={TomHon, Patrick and Abdulmojeed, Mustapha and Adelabu, Isaiah and Nantogma, Shiraz and Kabir, Mohammad Shah Hafez and Lehmkuhl, Soren and Chekmenev, Eduard Y. and Theis, Thomas}, year={2021}, month={Dec} }