Min Chi Abdelshiheed, M., Moulder, R., Hostetter, J. W., Barnes, T., & Chi, M. (2024). Example, Nudge, or Practice? Assessing Metacognitive Knowledge Transfer of Factual and Procedural Learners. User Modeling and User-Adapted Interaction, 7. https://doi.org/10.1007/s11257-024-09404-2 Hamilton, M., Morrow, B. F., Davis, L. B., Morgan, S., Ivy, J. S., Jiang, S., … Hilliard, K. (2024, May 17). Toward a More Diverse and Equitable Food Distribution System: Amplifying Diversity, Equity and Inclusion in Food Bank Operations. PRODUCTION AND OPERATIONS MANAGEMENT. https://doi.org/10.1177/10591478241252691 Singh, M. P., Chi, M., & Misra, V. (2023). Healthful Connected Living: Vision and Challenges for the Case of Obesity. IEEE INTERNET COMPUTING, 27(3), 7–14. https://doi.org/10.1109/MIC.2023.3257994 Abdelshiheed, M., Barnes, T., & Chi, M. (2023). How and When: The Impact of Metacognitive Knowledge Instruction and Motivation on Transfer Across Intelligent Tutoring Systems. International Journal of Artificial Intelligence in Education, 9. https://doi.org/10.1007/s40593-023-00371-0 Shabrina, P., Mostafavi, B., Abdelshiheed, M., Chi, M., & Barnes, T. (2023). Investigating the Impact of Backward Strategy Learning in a Logic Tutor: Aiding Subgoal Learning Towards Improved Problem Solving. International Journal of Artificial Intelligence in Education, 8. https://doi.org/10.1007/s40593-023-00338-1 Hostetter, J. W., & Chi, M. (2023). Latent Space Encoding for Interpretable Fuzzy Logic Rules in Continuous and Noisy High-Dimensional Spaces. Presented at the 2023 IEEE International Conference on Fuzzy Systems (FUZZ). https://doi.org/10.1109/FUZZ52849.2023.10309706 Hostetter, J. W., Abdelshiheed, M., Barnes, T., & Chi, M. (2023). Leveraging Fuzzy Logic Towards More Explainable Reinforcement Learning-Induced Pedagogical Policies on Intelligent Tutoring Systems. Presented at the 2023 IEEE International Conference on Fuzzy Systems (FUZZ). https://doi.org/10.1109/FUZZ52849.2023.10309741 Shen, D. S., & Chi, M. (2023). TC-DTW: Accelerating multivariate dynamic time warping through triangle inequality and point clustering. INFORMATION SCIENCES, 621, 611–626. https://doi.org/10.1016/j.ins.2022.11.082 Kim, Y. J., & Chi, M. (2023, March 25). Time-aware deep reinforcement learning with multi-temporal abstraction. APPLIED INTELLIGENCE. https://doi.org/10.1007/s10489-022-04392-5 Hostetter, J. W., Conati, C., Yang, X., Abdelshiheed, M., Barnes, T., & Chi, M. (2023). XAI to Increase the Effectiveness of an Intelligent Pedagogical Agent. Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents. (IVA’23). Presented at the 23rd ACM International Conference on Intelligent Virtual Agents. (IVA’23), Würzburg, Germany. https://doi.org/10.1145/3570945.3607301 Maniktala, M., Chi, M., & Barnes, T. (2022, August 3). Enhancing a student productivitymodel for adaptive problem-solving assistance. USER MODELING AND USER-ADAPTED INTERACTION. https://doi.org/10.1007/s11257-022-09338-7 Abdelshiheed, M., Hostetter, J. W., Yang, X., Barnes, T., & Chi, M. (2022). Mixing Backward- with Forward-Chaining for Metacognitive Skill Acquisition and Transfer. https://doi.org/10.1007/978-3-031-11644-5_47 Gao, G., Khoshnevisan, F., & Chi, M. (2022). Reconstructing Missing EHRs Using Time-Aware Within- and Cross-Visit Information for Septic Shock Early Prediction. 2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), pp. 151–162. https://doi.org/10.1109/ICHI54592.2022.00034 Ju, S., Yang, Xi, Barnes, T., & Chi, M. (2022). Student-Tutor Mixed-Initiative Decision-Making Supported by Deep Reinforcement Learning. ARTIFICIAL INTELLIGENCE IN EDUCATION, PT I, Vol. 13355, pp. 440–452. https://doi.org/10.1007/978-3-031-11644-5_36 Ausin, M. S., Maniktala, M., Barnes, T., & Chi, M. (2022, November 28). The Impact of Batch Deep Reinforcement Learning on Student Performance: A Simple Act of Explanation Can Go A Long Way. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION. https://doi.org/10.1007/s40593-022-00312-3 Wiedbusch, M. D., Kite, V., Yang, X., Park, S., Chi, M., Taub, M., & Azevedo, R. (2021). A Theoretical and Evidence-Based Conceptual Design of MetaDash: An Intelligent Teacher Dashboard to Support Teachers' Decision Making and Students’ Self-Regulated Learning. Frontiers in Education, 6. https://doi.org/10.3389/feduc.2021.570229 Sharma, E., Davis, L., Ivy, J., & Chi, M. (2021). Data to Donations: Towards In-Kind Food Donation Prediction across Two Coasts. 2021 IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE (GHTC), pp. 281–288. https://doi.org/10.1109/GHTC53159.2021.9612484 Ju, S., Zhou, G., Abdelshiheed, M., Barnes, T., & Chi, M. (2021). Evaluating Critical Reinforcement Learning Framework in the Field. https://doi.org/10.1007/978-3-030-78292-4_18 Ausin, M. S., Azizsoltani, H., Ju, S., Kim, Y. J., & Chi, M. (2021). InferNet for Delayed Reinforcement Tasks: Addressing the Temporal Credit Assignment Problem. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), pp. 1337–1348. https://doi.org/10.1109/BigData52589.2021.9671827 Zhou, G., Azizsoltani, H., Ausin, M. S., Barnes, T., & Chi, M. (2021, August 16). Leveraging Granularity: Hierarchical Reinforcement Learning for Pedagogical Policy Induction. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, Vol. 8. https://doi.org/10.1007/s40593-021-00269-9 Kim, Y. J., Ausin, M. S., & Chi, M. (2021). Multi-Temporal Abstraction with Time-Aware Deep Q-Learning for Septic Shock Prevention. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), pp. 1657–1663. https://doi.org/10.1109/BigData52589.2021.9671662 Ausin, M. S., Maniktala, M., Barnes, T., & Chi, M. (2021). Tackling the Credit Assignment Problem in Reinforcement Learning-Induced Pedagogical Policies with Neural Networks. ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2021), PT I, Vol. 12748, pp. 356–368. https://doi.org/10.1007/978-3-030-78292-4_29 Cody, C., Maniktala, M., Lytle, N., Chi, M., & Barnes, T. (2021, May 21). The Impact of Looking Further Ahead: A Comparison of Two Data-driven Unsolicited Hint Types on Performance in an Intelligent Data-driven Logic Tutor. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION. https://doi.org/10.1007/s40593-021-00237-3 Ju, S., Kim, Y. J., Ausin, M. S., Mayorga, M. E., & Chi, M. (2021). To Reduce Healthcare Workload: Identify Critical Sepsis Progression Moments through Deep Reinforcement Learning. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), pp. 1640–1646. https://doi.org/10.1109/BigData52589.2021.9671407 Khoshnevisan, F., & Chi, M. (2021). Unifying Domain Adaptation and Domain Generalization for Robust Prediction Across Minority Racial Groups. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, Vol. 12975, pp. 521–537. https://doi.org/10.1007/978-3-030-86486-6_32 Khoshnevisan, F., & Chi, M. (2020). An Adversarial Domain Separation Framework for Septic Shock Early Prediction Across EHR Systems. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), pp. 64–73. https://doi.org/10.1109/BigData50022.2020.9378058 Shen, D., & Chi, M. (2020). An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis. ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, Vol. 11986, pp. 213–228. https://doi.org/10.1007/978-3-030-39098-3_16 Maniktala, M., Cody, C., Barnes, T., & Chi, M. (2020). Avoiding Help Avoidance: Using Interface Design Changes to Promote Unsolicited Hint Usage in an Intelligent Tutor. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 30(4), 637–667. https://doi.org/10.1007/s40593-020-00213-3 Maniktala, M., Cody, C., Barnes, T., & Chi, M. (2021, March). Avoiding Help Avoidance: Using Interface Design Changes to Promote Unsolicited Hint Usage in an Intelligent Tutor (September, 10.1007/s40593-020-00213-3, 2020). INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, Vol. 31, pp. 154–155. https://doi.org/10.1007/s40593-020-00232-0 Zhang, Y., Lin, C., & Chi, M. (2020). Going deeper: Automatic short-answer grading by combining student and question models. USER MODELING AND USER-ADAPTED INTERACTION, 30(1), 51–80. https://doi.org/10.1007/s11257-019-09251-6 Sohn, H., Park, K., & Chi, M. (2020). MuLan: Multilevel Language-based Representation Learning for Disease Progression Modeling. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), pp. 1246–1255. https://doi.org/10.1109/BigData50022.2020.9377829 Zhou, G., Azizsoltani, H., Ausin, M. S., Barnes, T., & Chi, M. (2019). Hierarchical Reinforcement Learning for Pedagogical Policy Induction. ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2019), PT I, Vol. 11625, pp. 544–556. https://doi.org/10.1007/978-3-030-23204-7_45 Yang, Xi, Kim, Y.-J., Taub, M., Azevedo, R., & Chi, M. (2020). PRIME: Block-Wise Missingness Handling for Multi-modalities in Intelligent Tutoring Systems. MULTIMEDIA MODELING (MMM 2020), PT II, Vol. 11962, pp. 63–75. https://doi.org/10.1007/978-3-030-37734-2_6 Shen, S., Mostafavi, B., Lynch, C., Barnes, T., & Chi, M. (2018). Empirically Evaluating the Effectiveness of POMDP vs. MDP Towards the Pedagogical Strategies Induction. In Lecture Notes in Computer Science (pp. 327–331). https://doi.org/10.1007/978-3-319-93846-2_61 Shen, S., Ausin, M. S., Mostafavi, B., & Chi, M. (2018). Improving Learning & Reducing Time: A Constrained Action-Based Reinforcement Learning Approach. PROCEEDINGS OF THE 26TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'18), pp. 43–51. https://doi.org/10.1145/3209219.3209232 Lin, C., & Chi, M. (2017). A Comparisons of BKT, RNN and LSTM for Learning Gain Prediction. In Lecture Notes in Computer Science (pp. 536–539). https://doi.org/10.1007/978-3-319-61425-0_58 Lin, C., & Chi, M. (2017). A Comparisons of BKT, RNN and LSTM for Learning Gain Prediction. Artificial intelligence in education, aied 2017, 10331, 536–539. Zhang, Y., Lin, C., Chi, M., Ivy, J., Capan, M., & Huddleston, J. M. (2017). LSTM for septic shock: Adding unreliable labels to reliable predictions. 2017 IEEE International Conference on Big Data (Big Data), 1233–1242. https://doi.org/10.1109/bigdata.2017.8258049 Chin, D. B., Chi, M., & Schwartz, D. L. (2016). A comparison of two methods of active learning in physics: inventing a general solution versus compare and contrast. INSTRUCTIONAL SCIENCE, 44(2), 177–195. https://doi.org/10.1007/s11251-016-9374-0 Shen, S. T., Lin, C., Mostafavi, B., Barnes, T., & Chi, M. (2016). An analysis of feature selection and reward function for model-based reinforcement learning. Intelligent tutoring systems, its 2016, 0684, 504–505. Lynch, C. F., Xue, L. T., & Chi, M. (2016). Evolving augmented graph grammars for argument analysis. Proceedings of the 2016 Genetic and Evolutionary Computation Conference (GECCO'16 Companion), 65–66. https://doi.org/10.1145/2908961.2908994 Lin, C., & Chi, M. (2016). Intervention-BKT: Incorporating Instructional Interventions into Bayesian Knowledge Tracing. In Intelligent Tutoring Systems (pp. 208–218). https://doi.org/10.1007/978-3-319-39583-8_20 Lin, C., & Chi, M. (2016). Intervention-BKT: Incorporating instructional interventions into Bayesian knowledge tracing. Intelligent tutoring systems, its 2016, 0684, 208–218. Mostafavi, B., Zhou, G., Lynch, C., Chi, M., & Barnes, T. (2015). Data-Driven Worked Examples Improve Retention and Completion in a Logic Tutor. In Lecture Notes in Computer Science (pp. 726–729). https://doi.org/10.1007/978-3-319-19773-9_102 Mostafavi, B., Zhou, G. J., Lynch, C., Chi, M., & Barnes, T. (2015). Data-driven worked examples improve retention and completion in a logic tutor. Artificial intelligence in education, aied 2015, 9112, 726–729. Choo, E., Yu, T., & Chi, M. (2015). Detecting Opinion Spammer Groups Through Community Discovery and Sentiment Analysis. In Data and Applications Security and Privacy XXIX (pp. 170–187). https://doi.org/10.1007/978-3-319-20810-7_11 Choo, E., Yu, T., & Chi, M. (2015). Detecting opinion spammer groups through community discovery and sentiment analysis. Data and applications security and privacy xxix, 9149, 170–187. Lynch, C. F., Ashley, K. D., & Chi, M. (2014). Can Diagrams Predict Essay Grades? In Intelligent Tutoring Systems (pp. 260–265). https://doi.org/10.1007/978-3-319-07221-0_32 Chi, M., Jordan, P., & VanLehn, K. (2014). When Is Tutorial Dialogue More Effective Than Step-Based Tutoring? In Intelligent Tutoring Systems (pp. 210–219). https://doi.org/10.1007/978-3-319-07221-0_25 Chi, M., Jordan, P., & VanLehn, K. (2014). When is tutorial dialogue more effective than step-based tutoring? Intelligent tutoring systems, its 2014, 8474, 210–219. Chi, M., VanLehn, K., Litman, D., & Jordan, P. (2011). Empirically evaluating the application of reinforcement learning to the induction of effective and adaptive pedagogical strategies. User Modeling and User-Adapted Interaction, 21(1-2), 137–180. https://doi.org/10.1007/S11257-010-9093-1 Chi, M., VanLehn, K., & Litman, D. (2010). Do Micro-Level Tutorial Decisions Matter: Applying Reinforcement Learning to Induce Pedagogical Tutorial Tactics. In Intelligent Tutoring Systems (pp. 224–234). https://doi.org/10.1007/978-3-642-13388-6_27 Chi, M., VanLehn, K., Litman, D., & Jordan, P. (2010). Inducing Effective Pedagogical Strategies Using Learning Context Features. In User Modeling, Adaptation, and Personalization (pp. 147–158). https://doi.org/10.1007/978-3-642-13470-8_15 Chi, M., & VanLehn, K. (2008). Eliminating the Gap between the High and Low Students through Meta-cognitive Strategy Instruction. In Intelligent Tutoring Systems (pp. 603–613). https://doi.org/10.1007/978-3-540-69132-7_63 VanLehn, K., Bhembe, D., Chi, M., Lynch, C., Schulze, K., Shelby, R., … Wintersgill, M. (2004). Implicit Versus Explicit Learning of Strategies in a Non-procedural Cognitive Skill. In Intelligent Tutoring Systems (pp. 521–530). https://doi.org/10.1007/978-3-540-30139-4_49