@article{abney_reed_naik_bryant_herbert_leonard_vadlamannati_mook_beknalkar_alvarez_et al._2022, title={Autonomous Closed-Loop Experimental Characterization and Dynamic Model Validation of a Scaled Underwater Kite}, volume={144}, ISSN={["1528-9028"]}, DOI={10.1115/1.4054141}, abstractNote={Abstract This paper presents the closed-loop experimental framework and dynamic model validation for a 1/12-scale underwater kite design. The pool-based tow testing framework described herein, which involves a fully actuated, closed-loop controlled kite and flexible tether, significantly expands upon the capabilities of any previously developed open-source framework for experimental underwater kite characterization. Specifically, the framework has allowed for the validation of three closed-loop flight control strategies, along with a critical comparison between dynamic model predictions and experimental results. In this paper, we provide a detailed presentation of the experimental tow system and kite setup, describe the control algorithms implemented and tested, and quantify the level of agreement between our multi-degree-of-freedom kite dynamic model and experimental data. We also present a sensitivity analysis that helps to identify the most influential parameters to kite performance and further explain the remaining mismatches between the model and data.}, number={7}, journal={JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME}, author={Abney, Andrew and Reed, James and Naik, Kartik and Bryant, Samuel and Herbert, Dillon and Leonard, Zak and Vadlamannati, Ashwin and Mook, Mariah and Beknalkar, Sumedh and Alvarez, Miguel and et al.}, year={2022}, month={Jul} }