@article{hayes_mohamedshah_chadwick-corbin_hoskin_iorizzo_lila_neilson_ferruzzi_2022, title={Bioaccessibility and intestinal cell uptake of carotenoids and chlorophylls differ in powdered spinach by the ingredient form as measured using in vitro gastrointestinal digestion and anaerobic fecal fermentation models}, volume={13}, ISSN={["2042-650X"]}, url={https://doi.org/10.1039/D2FO00051B}, DOI={10.1039/d2fo00051b}, abstractNote={Insights into food matrix factors impacting bioavailability of bioactive carotenoids and chlorophylls from fruits and vegetable ingredients are essential to understanding their ability to promote health.}, number={7}, journal={FOOD & FUNCTION}, publisher={Royal Society of Chemistry (RSC)}, author={Hayes, Micaela and Mohamedshah, Zulfiqar and Chadwick-Corbin, Sydney and Hoskin, Roberta and Iorizzo, Massimo and Lila, Mary Ann and Neilson, Andrew P. and Ferruzzi, Mario G.}, year={2022}, month={Mar} } @article{mohamedshah_hayes_chadwick-corbin_neilson_ferruzzi_2022, title={Bioaccessibility, gut microbial metabolism and intestinal transport of phenolics from 100% Concord grape juice and whole grapes are similar in a simulated digestion and fecal fermentation model}, volume={3}, ISSN={["2042-650X"]}, DOI={10.1039/d1fo04226b}, abstractNote={Phenolic rich 100% grape juice has been associated with many health benefits, but its place in dietary guidance is controversial relative to whole fruit.}, journal={FOOD & FUNCTION}, author={Mohamedshah, Zulfiqar and Hayes, Micaela and Chadwick-Corbin, Sydney and Neilson, Andrew P. and Ferruzzi, Mario G.}, year={2022}, month={Mar} } @article{grace_hoskin_hayes_iorizzo_kay_ferruzzi_lila_2022, title={Spray-dried and freeze-dried protein-spinach particles; effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics}, volume={388}, ISSN={["1873-7072"]}, DOI={10.1016/j.foodchem.2022.133017}, abstractNote={The effects of protein carrier and drying technique on the concentration and bioaccessibility of lipophilic compounds (lutein, β-carotene, chlorophylls a and b) and hydrophilic flavonoids in freeze-dried (FD) or spray-dried (SD) spinach juice and protein-spinach particles were investigated. Carotenoid and chlorophyll contents were highest in FD spinach juice without protein (147 and 1355 mg/100 g, respectively). For both SD and FD protein-spinach particles, SPI best protected carotenoids and chlorophylls (123 and 1160 mg/g, respectively), although the bioaccessibility of lipophilic compounds in WPI particles was higher than SPI particles (p < 0.05). For flavonoids, the drying technique was more important than the type of carrier, since FD particles had higher total flavonoids than SD. However, SD particles had higher bioaccessibility for most flavonoids (40-90 %) compared to FD (<20 %). The drying method and protein carrier can be designed to produce protein-spinach ingredients with desired concentration of compounds and bioaccessibility.}, journal={FOOD CHEMISTRY}, author={Grace, Mary H. and Hoskin, Roberta T. and Hayes, Micaela and Iorizzo, Massimo and Kay, Colin and Ferruzzi, Mario G. and Lila, Mary Ann}, year={2022}, month={Sep} } @article{lewandowski_zhang_hayes_ferruzzi_paton_2021, title={Design and Nutrient Analysis of a Carotenoid-Rich Food Product to Address Vitamin A and Protein Deficiency}, volume={10}, ISSN={["2304-8158"]}, DOI={10.3390/foods10051019}, abstractNote={Worldwide undernutrition affects over 820 million individuals and is the underlying cause of over 50% of all childhood deaths. Sweet potatoes have been promoted to address vitamin A (vitA) deficiency, with a single, orange-fleshed sweet potato (OFSP) providing enough vitA, as β-carotene, to meet daily needs. However, the bioavailability of β-carotene is dependent on the presence of dietary fat, which is not provided by OFSP, and it lacks some essential amino acids. Therefore, in an attempt to create a food product that meets daily vitA requirements with adequate bioavailability and complete protein, we designed and assessed a sweet potato, peanut paste, and legume product. The final food product formulation, developed through computer modeling, resulted in a 65/5/35 (w/w/w) formulation in a 250 g serving and ~330 kcal. We then confirmed the nutrient content of macronutrients, and essential amino acids, zinc, and iron contents. Total β-carotene was assessed by HPLC and was lower than predicted through computer modeling, likely due to losses through thermal processing and/or degradation from storage. The results of this project indicate that the three ingredients can be combined into a single 250 g food product to provide >300 kcal energy, complete protein, and micronutrients in a more bioavailable form.}, number={5}, journal={FOODS}, author={Lewandowski, Kristina and Zhang, Xiaoyu and Hayes, Micala and Ferruzzi, Mario G. and Paton, Chad M.}, year={2021}, month={May} } @article{hayes_corbin_nunn_pottorff_kay_lila_iorrizo_ferruzzi_2021, title={Influence of simulated food and oral processing on carotenoid and chlorophyll in vitro bioaccessibility among six spinach genotypes}, volume={5}, ISSN={["2042-650X"]}, url={https://doi.org/10.1039/D1FO00600B}, DOI={10.1039/d1fo00600b}, abstractNote={Spinach processing and simulated mastication impact the bioaccessibility of carotenoids and chlorophylls with a spinach matrix.}, journal={FOOD & FUNCTION}, publisher={Royal Society of Chemistry (RSC)}, author={Hayes, Micaela and Corbin, Sydney and Nunn, Candace and Pottorff, Marti and Kay, Colin D. and Lila, Mary Ann and Iorrizo, Massimo and Ferruzzi, Mario G.}, year={2021}, month={May} } @article{hayes_pottorff_kay_van deynze_osorio-marin_lila_iorrizo_ferruzzi_2020, title={In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars}, volume={68}, ISSN={["1520-5118"]}, DOI={10.1021/acs.jafc.0c00158}, abstractNote={Spinach, a nutrient-dense, green-leafy vegetable, is a rich source of carotenoid and chlorophyll bioactives. While the content of bioactives is known to vary with the genotype, variation in bioaccessibility is unknown. Bioaccessibility was explored in 71 greenhouse-grown spinach genotypes in fall and spring 2018/2019. Spinach was phenotyped for its greenness, leaf texture, leaf shape, and SPAD chlorophyll content. Postharvest, spinach was washed, blanched, and homogenized prior to assessment of bioactive bioaccessibility using a novel high-throughput in vitro digestion model followed by high-performance liquid chromatography with a photodiode array detector analysis. There was a significant variation in the bioaccessible content for all bioactives (p < 0.05), except for chlorophyll b (p = 0.063) in spring-grown spinach. The correlation coefficients of bioaccessible contents between seasons reveal that lutein (r = 0.52) and β-carotene (r = 0.55) were correlated to a greater extent than chlorophyll a (r = 0.38) and chlorophyll b (r = 0.19). The results suggest that carotenoid and chlorophyll bioaccessible contents may vary based on spinach genotypes and may be stable across seasons.}, number={11}, journal={JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY}, author={Hayes, Micaela and Pottorff, Marti and Kay, Colin and Van Deynze, Allen and Osorio-Marin, Juliana and Lila, Mary Ann and Iorrizo, Massimo and Ferruzzi, Mario G.}, year={2020}, month={Mar}, pages={3495–3505} } @misc{hayes_ferruzzi_2020, title={Update on the bioavailability and chemopreventative mechanisms of dietary chlorophyll derivatives}, volume={81}, ISSN={["0271-5317"]}, DOI={10.1016/j.nutres.2020.06.010}, abstractNote={Chlorophyll, a phytochemical responsible for the green pigmentation in plants, has been studied for almost 100 years for its biological activities in humans. Over the past 30 years, the potential chemopreventative activities of both natural chlorophylls and their processed induced derivatives as well as the semisynthetic forms, such as sodium copper chlorophyllin, have been the focus of many research efforts. Established as potential chemopreventative agents with little to no bioavailability themselves, the activities of chlorophyll derivatives were generally ascribed to their ability to modulate mutagen/carcinogen bioavailability, their metabolism, and ultimately their ability to decrease the “exposure” to these carcinogens for humans at risk. More recently, systemic activities of chlorophyll derivatives have been reported to include modulation of oxidative stress and regulation of xenobiotic metabolizing systems and gene expression of systems critical to prevention of initiation and/or progression of cancer including NFE2-related factor 2, nuclear factor kappa B, TGF-β, and β-catenin pathways. With this in mind, the goals of this review are to provide an update to the comprehensive review of Ferruzzi and Blakeslee (2007) to include new insights into the behavior of chlorophyll derivatives in the gut as well as evidence of the systemic bioavailability of chlorophyll derivatives and their metabolites in support of potential impacts in prevention of cancer throughout the body.}, journal={NUTRITION RESEARCH}, author={Hayes, Micaela and Ferruzzi, Mario G.}, year={2020}, month={Sep}, pages={19–37} } @article{li_ho_hayes_ferruzzi_2019, title={The Roles of Food Processing in Translation of Dietary Guidance for Whole Grains, Fruits, and Vegetables}, volume={10}, ISSN={["1941-1421"]}, DOI={10.1146/annurev-food-032818-121330}, abstractNote={ The Dietary Guidelines for Americans (DGA) recommend the consumption of whole grains, fruits, and vegetables as part of a healthy diet. However, current consumption patterns suggest that most Americans are not meeting these recommendations. The challenge remains to align the DGA guidance with the food environment and consumers’ expectations for product quality, availability, and affordability. Currently, processed foods play an increasingly important role in American diets. Often characterized as unhealthy, processed foods are contributors to both food and nutritional security. When the alignment of processing strategies with DGA principles exists, achieving DGA goals is more likely, regardless of processing level. In this review, select processing strategies for whole grains, fruits, and vegetables are described to show how DGA principles can guide processing efforts to create healthier products. Although whole grains, supported by industry-wide innovation and guidance, have had some success with consumers, improving intake of fruit and vegetable products remains a challenge. Closing consumption gaps requires new innovations and products aligned with consumer preferences and DGA principles. }, journal={ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 10}, author={Li, Min and Ho, Kacie K. H. Y. and Hayes, Micaela and Ferruzzi, Mario G.}, year={2019}, pages={569–596} }