@article{cahoon_jordan_tranel_york_riggins_seagroves_inman_everman_leon_2024, title={Influence of gender and glyphosate resistance on Palmer amaranth growth and interference with cotton}, volume={10}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20272}, DOI={10.1002/cft2.20272}, abstractNote={Abstract Management of herbicide‐resistant weeds can be improved by understanding the biology of resistant biotypes. While the majority of research has focused on female plants and seed production of Palmer amaranth ( Amaranthus palmeri S. Watson) that are resistant to glyphosate, growth of male plants that are resistant to this herbicide has not been studied in detail. Additionally, interference of male versus female Palmer amaranth plants on cotton ( Gossypium hirsutum ) yield has not been reported. Plant height and biomass of male and female plants from a mixed population of glyphosate‐resistant (GR) and glyphosate‐susceptible (GS) plants was studied in North Carolina when grown season‐long with cotton. Palmer amaranth height was less for GR male plants compared with GS males and both GR and GS females. Biomass of Palmer amaranth female plants was twice that of male plants irrespective of glyphosate resistance. Cotton yield was affected similarly by Palmer amaranth regardless of either gender or glyphosate resistance status. The implications of shorter GR male plants on pollen dispersal and ramifications on management of glyphosate resistance are not known. Results from these trials did not address implications of the height of male plants on fitness of GR resistance. Nonetheless, the finding that GR male plants were shorter in the field than GS male plants warrants a new look at this topic. Similar reductions for cotton yield in presence of both GR and GS biotypes and genders suggest that current yield loss assessments and management decisions do not need to consider these variables in Palmer amaranth populations.}, number={1}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, author={Cahoon, Charles W. and Jordan, David L. and Tranel, Patrick J. and York, Alan C. and Riggins, Chance and Seagroves, Richard and Inman, Matthew and Everman, Wesley and Leon, Ramon}, year={2024}, month={Jun} } @article{oreja_inman_jordan_vann_jennings_leon_2022, title={Effect of cotton herbicide programs on weed population trajectories and frequency of glyphosate-resistant Palmer amaranth (Amaranthus palmeri)}, volume={7}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.41}, DOI={10.1017/wsc.2022.41}, abstractNote={AbstractThe adoption of dicamba-resistant cotton (Gossypium hirsutum L.) cultivars allows using dicamba to reduce weed populations across growing seasons. However, the overuse of this tool risks selecting new herbicide-resistant biotypes. The objectives of this research were to determine the population trajectories of several weed species and track the frequency of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Watson) over 8 yr in dicamba-resistant cotton. An experiment was established in North Carolina in 2011, and during the first 4 yr, different herbicide programs were applied. These programs included postemergence applications of glyphosate, alone or with dicamba, with or without residual herbicides. During the last 4 yr, all programs received glyphosate plus dicamba. Biennial rotations of postemergence applications of glyphosate only and glyphosate plus dicamba postemergence with and without preemergence herbicides were also included. Sequential applications of glyphosate plus dicamba were applied to the entire test area for the final 4 yr of the study. No herbicide program was entirely successful in controlling the weed community. Weed population trajectories were different according to species and herbicide program, creating all possible outcomes; some increased, others decreased, and others remained stable. Density of resistant A. palmeri increased during the first 4 yr with glyphosate-only programs (up to 11,739 plants m−2) and decreased a 96% during the final 4 yr, when glyphosate plus dicamba was implemented. This species had a strong influence on population levels of other weed species in the community. Goosegrass [Eleusine indica (L.) Gaertn.] was not affected by A. palmeri population levels and even increased its density in some herbicide programs, indicating that not only herbicide resistance but also reproductive rates and competitive dynamics are critical for determining weed population trajectories under intensive herbicide-based control programs. Frequency of glyphosate resistance reached a maximum of 62% after 4 yr, and those levels were maintained until the end of the experiment.}, journal={WEED SCIENCE}, publisher={Cambridge University Press (CUP)}, author={Oreja, Fernando H. and Inman, Matthew D. and Jordan, David L. and Vann, Matthew and Jennings, Katherine M. and Leon, Ramon G.}, year={2022}, month={Jul} } @article{cahoon_jordan_tranel_york_riggins_seagroves_inman_everman_leon_2022, title={In-field assessment of EPSPS amplification on fitness cost in mixed glyphosate-resistant and glyphosate-sensitive populations of Palmer amaranth (Amaranthus palmeri)}, volume={10}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2022.60}, DOI={10.1017/wsc.2022.60}, abstractNote={AbstractComparing fitness of herbicide-resistant and herbicide-susceptible weed biotypes is important for managing herbicide resistance. Previous research suggests there is little to no fitness penalty from amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (a mechanism of glyphosate resistance) in Palmer amaranth (Amaranthus palmeri S. Watson) in controlled studies in the greenhouse or growth chamber. A field study was conducted in North Carolina at three locations naturally infested with A. palmeri to determine vegetative, reproductive, and germination fitness of plants with and without EPSPS amplification grown season-long with cotton (Gossypium hirsutum L.). Seed number was not correlated with EPSPS copy number. However, when plants were binned into two groups, those having an EPSPS copy number ≥2 (relative to reference genes) and those having an EPSPS copy number <2, plant fresh weight and seed number were 1.4 and 1.6 times greater, respectively, for plants with fewer than 2 EPSPS copies. Amaranthus palmeri height and seed germination, and yield of cotton, did not differ when comparing the two binned groups. These data suggest that A. palmeri plants with EPSPS amplification are relatively less fit in the absence of glyphosate, but this reduced fitness does not translate into differences in interference with cotton.}, journal={WEED SCIENCE}, author={Cahoon, Charles W. and Jordan, David L. and Tranel, Patrick J. and York, Alan C. and Riggins, Chance and Seagroves, Richard and Inman, Matthew and Everman, Wesley and Leon, Ramon}, year={2022}, month={Oct} } @article{oreja_inman_jordan_bardhan_leon_2022, title={Modeling weed community diversity based on species population density dynamics and herbicide use intensity}, volume={138}, ISSN={["1873-7331"]}, DOI={10.1016/j.eja.2022.126533}, abstractNote={Herbicide programs change weed population density as well as weed community composition. The repeated use of a given program can result in a weed community that progressively becomes more difficult to manage or could lose its ability to provide ecosystem services. Simulation of those changes using stochastic models considering population dynamics of multiple species makes it possible to identify a priori potential community changes that might result from the use of a given herbicide program. The objectives of this work were to model the population dynamics of weed species under different herbicide programs and how those dynamics change weed community diversity over time. Weed population dynamics were stochastically modeled along ten years using population growth rate (lambda) for each species under different herbicide programs. Lambda values were obtained from an eight-year long, field experiment, and these were used to parameterize the stochastic ranges for the model for each weed species. Population trajectories were modeled for each individual species over ten years and the results were used to estimate richness, diversity, and evenness for each herbicide use scenario. The repeated use of glyphosate alone had a minimal effect on richness, but it caused a strong reduction in weed diversity and evenness. Programs with more mechanisms of action and the use of both preemergence and postemergence herbicides were slightly more likely to suffer the loss of weed species than programs with single or just a few herbicides. Conversely, the former had a higher probability of maintaining weed diversity and evenness than the latter. According to simulations, losses in weed community diversity are reversible, especially when highly competitive species were eradicated allowing other species with lower lambda to increase their populations. However, the eradication of species with low reproductive rates reduced diversity and evenness. The effects of herbicide programs on the weed community lasted for several years even after those programs were modified indicating that seed banks play a major buffering role in the rate of change of weed community composition. Thus, frequent changes in management interrupting the repeated use of specific weed control programs, even under high herbicide intensity use (i.e., number of applications and mechanisms of action), can help maintain weed diversity in agroecosystems.}, journal={EUROPEAN JOURNAL OF AGRONOMY}, author={Oreja, Fernando H. and Inman, Matthew D. and Jordan, David L. and Bardhan, Deepayan and Leon, Ramon G.}, year={2022}, month={Aug} } @article{clapp_vann_cahoon_jordan_fisher_inman_2022, title={Evaluations of S-Metolachlor in flue-cured tobacco weed management programs}, volume={2}, ISSN={["1435-0645"]}, url={https://doi.org/10.1002/agj2.20984}, DOI={10.1002/agj2.20984}, abstractNote={AbstractEffective weed control is critical to growth and development of flue‐cured tobacco; however, current herbicide options are limited in commercial production. Field experiments were conducted from 2017 to 2018 to evaluate S‐metolachlor for use in flue‐cured tobacco weed management programs. Treatments included 10 herbicide programs: pretransplanted incorporated (PTI) applications of S‐metolachlor (1.07 kg a.i. ha–1) alone or in various combinations with sulfentrazone (0.18 kg a.i. ha–1), clomazone (0.84 kg a.i. ha–1), and pendimethalin (0.79 kg a.i. ha–1). S‐metolachlor and pendimethalin were also applied posttransplanting directed to row middles (POST‐DIR) following PTI applications of sulfentrazone + clomazone. A single posttransplanting over‐the‐top (POST‐OT) application of S‐metolachlor and a non‐treated control were included for comparison. The inclusion of S‐metolachlor in PTI herbicide programs did not improve weed control beyond the combination of sulfentrazone + clomazone. However, weed control after final harvest was improved by 8%, when S‐metolachlor was applied POST‐DIR. S‐metolachlor applied POST‐OT caused injury to tobacco plants (12%), although symptoms were transient with less than 2% visual injury 6 wk after transplanting. Due to increased weed control through harvest and the low injury potential, our results suggest that POST‐DIR applications of S‐metolachlor are the best fit for flue‐cured tobacco production when used in conjunction with recommended PTI herbicide programs.}, journal={AGRONOMY JOURNAL}, author={Clapp, Andrew M. and Vann, Matthew C. and Cahoon, Charles W. and Jordan, David L. and Fisher, Loren R. and Inman, Matt D.}, year={2022}, month={Feb} } @article{vann_inman_fisher_2021, title={Flue-cured tobacco holding-ability is affected by harvest timing}, volume={11}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20137}, DOI={10.1002/cft2.20137}, abstractNote={AbstractThe propensity for flue‐cured tobacco (Nicotiana tabacum L.) leaves to retain or improve their visual quality and value over an extended period of time is referred to as “holding‐ability.” General holding‐ability models that are specific to popular cultivars are not available to commercial farmers. Research was conducted at five locations from 2009 to 2014 to determine the effect of flue‐cured tobacco cultivar and upper‐stalk harvest timing to cured leaf yield, visual quality, price per pound, and economic value per acre. Two commercial cultivars, ‘K326’ and ‘NC196’, were evaluated within each location, with upper‐stalk leaf harvest schedule as follows: 7 d under‐ripe (Day 0), 3 d over‐ripe (Day 10), 13 d over‐ripe (Day 20), 23 d over‐ripe (Day 30), and 33 d over‐ripe (Day 40). The measured parameters were not influenced by cultivar selection, thus indicating that K326 and NC196 are likely to have similar ripening patterns and holding‐ability when produced under the same growing conditions. Quadratic responses for harvest timing were significant for cured leaf measurements. Yield and visual quality were greatest at Days 17 and 20, respectively. Cured leaf price continued to increase until Day 25, although maximum economic value per acre was obtained at Days 20 and 21 (US$3,041 acre–1). Increases in yield, quality, and value from Day 0 through 20 suggest that a 2‐wk delay in the harvest of upper‐stalk leaves may prove to be financially advantageous to farmers.}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, publisher={Wiley}, author={Vann, Matthew C. and Inman, Matthew D. and Fisher, Loren R.}, year={2021}, month={Nov} } @article{oreja_inman_jordan_leon_2021, title={Population growth rates of weed species in response to herbicide programme intensity and their impact on weed community}, volume={9}, ISSN={["1365-3180"]}, url={https://doi.org/10.1111/wre.12509}, DOI={10.1111/wre.12509}, abstractNote={AbstractThe adoption of dicamba‐tolerant crops has reduced the challenge of controlling glyphosate‐resistantAmaranthus palmeriin these crops. However, introducing herbicide programmes with new mechanisms of action and different intensities can favour major shifts in weed communities. This can affect not only the functionality of the agroecosystem, but also resource availability to the most problematic species. The objectives of this work were to evaluate how herbicide programme structure and intensity affect (a) weed diversity, (b) population growth rate (λ) of weed species and (c) weed community structure based on λ dynamics in a dicamba‐tolerant cotton monoculture. To achieve these objectives, a cotton field experiment was established to compare four herbicide programmes from 2011 to 2018. The herbicide programmes differed in the first 4 years (i.e. glyphosate every year, alternating glyphosate and glyphosate plus dicamba every other year, glyphosate plus dicamba every year, and residual herbicide and glyphosate plus dicamba every year). During the last 4 years, all programmes received glyphosate plus dicamba. The weed seedbank was evaluated every spring and λ calculated. Environmental variation from year to year was more important in determining weed richness than herbicide programmes, which exhibited similar richness across all treatments during the eight years of the study. Regardless of herbicide programme, most species maintained λ between zero and one. Only a few species were the exception with λ values above one, such asA.palmeri,Mollugo verticillataandEleusine indica. Although glyphosate plus dicamba reduced λ for several species, this herbicide mix was less effective in reducing λ for other weeds compared with glyphosate alone, suggesting a potential antagonism that could change weed community composition. The limited changes in λ for most species suggest the capacity of weeds to adjust reproduction and survival to overcome changes in mortality rates caused by increases in herbicide use intensity.}, journal={WEED RESEARCH}, publisher={Wiley}, author={Oreja, Fernando H. and Inman, Matthew D. and Jordan, David L. and Leon, Ramon G.}, year={2021}, month={Sep} } @article{inman_vann_fisher_gannon_jordan_jennings_2021, title={Evaluation of dicamba retention in spray tanks and its impact on flue-cured tobacco}, volume={35}, ISSN={["1550-2740"]}, url={http://dx.doi.org/10.1017/wet.2020.73}, DOI={10.1017/wet.2020.73}, abstractNote={AbstractIn recent years, there has been increased use of dicamba due to the introduction of dicamba-resistant cotton and soybean in the United States. Therefore, there is a potential increase in off-target movement of dicamba and injury to sensitive crops. Flue-cured tobacco is extremely sensitive to auxin herbicides, particularly dicamba. In addition to yield loss, residue from drift or equipment contamination can have severe repercussions for the marketability of the crop. Studies were conducted in 2016, 2017, and 2018 in North Carolina to evaluate spray-tank cleanout efficiency of dicamba using various cleaning procedures. No difference in dicamba recovery was observed regardless of dicamba formulation and cleaning agent. Dicamba residue decreased with the number of rinses. There was no difference in dicamba residue recovered from the third rinse compared with residue from the tank after being refilled for subsequent tank use. Recovery ranged from 2% to 19% of the original concentration rate among the three rinses. Field studies were also conducted in 2018 to evaluate flue-cured tobacco response to reduced rates of dicamba ranging, from 1/5 to 1/10,000 of a labeled rate. Injury and yield reductions varied by environment and application timing. When exposed to 1/500 of a labeled rate at 7 and 11 wk after transplanting, tobacco injury ranged from 39% to 53% and 10% to 16% 24 days after application, respectively. The maximum yield reduction was 62%, with a 55% reduction in value when exposed to 112 g ha−1 of dicamba. Correlations showed significant relationships between crop injury assessment and yield and value reductions, with Pearson values ranging from 0.24 to 0.63. These data can provide guidance to growers and stakeholders and emphasize the need for diligent stewardship when using dicamba technology.}, number={1}, journal={WEED TECHNOLOGY}, publisher={Cambridge University Press (CUP)}, author={Inman, Matthew D. and Vann, Matthew C. and Fisher, Loren R. and Gannon, Travis W. and Jordan, David L. and Jennings, Katie M.}, year={2021}, month={Feb}, pages={35–42} } @article{hare_jordan_leon_edmisten_post_cahoon_everman_mahoney_inman_2020, title={Influence of timing and intensity of weed management on crop yield and contribution to weed emergence in cotton the following year}, volume={6}, ISSN={["2374-3832"]}, url={https://doi.org/10.1002/cft2.20021}, DOI={10.1002/cft2.20021}, abstractNote={AbstractAdequate weed control is important in protecting crop yield and allowing efficient harvest in North Carolina. Data in the literature are limited with respect to direct comparisons of weed control and yield across multiple crops. Research is also limited in terms of documenting the impact of weed control in one crop on weed populations in the crop planted the following season. Experiments were conducted in North Carolina to determine weed control and yield of corn (Zea mays L.), cotton (Gossypium hirsutum L.), and soybean [Glycine max (L.) Merr.] in the same experiment when herbicides were applied postemergence at different timings (Year 1) and to determine how weed control translated into weed populations and cotton yield the following year (Year 2). Herbicides were applied 2 or 6 wk after planting (WAP); 2 and 4 WAP; 4 and 6 WAP; and 2, 4, and 6 WAP. At Lewiston‐Woodville, common ragweed (Ambrosia artemisiifolia L.) and Texas millet (Urochloa texana L.) were present. At Rocky Mount, Palmer amaranth (Amanthus palmeri S. Wats) and large crabgrass (Digitaria sanguinalis L.) were present. A single postemergence application of herbicide protected yield from weed interference in corn, whereas in most instances multiple herbicide applications were needed in cotton and to a degree in soybean. Weed densities in Year 2 in cotton were negatively correlated with weed control the previous year in corn, cotton, and soybean. Densities of common ragweed and Palmer amaranth 3 WAP in Year 2 were higher in cotton when the preceding crop was cotton or soybean rather than corn when herbicides were not applied; no difference was noted when comparing cotton and soybean. In some instances, sequential applications of herbicides resulted in lower weed densities the following year in cotton. These results demonstrate the importance of timely, sequential herbicide applications for weed control in cotton and soybean and in some instances the positive benefits on weed populations the following year in cotton.}, number={1}, journal={CROP FORAGE & TURFGRASS MANAGEMENT}, publisher={Wiley}, author={Hare, Andrew T. and Jordan, David L. and Leon, Ramon G. and Edmisten, Keith L. and Post, Angela R. and Cahoon, Charles W. and Everman, Wesley J. and Mahoney, Denis J. and Inman, Matthew D.}, year={2020} } @article{chaudhari_jordan_york_jennings_cahoon_chandi_inman_2017, title={Biology and management of Glyphosate-resistant and Glyphosate-susceptible Palmer Amaranth (&ITAmaranthus&IT &ITpalmeri&IT) phenotypes from a segregating population}, volume={65}, number={6}, journal={Weed Science}, author={Chaudhari, S. and Jordan, D. L. and York, A. C. and Jennings, K. M. and Cahoon, C. W. and Chandi, A. and Inman, M. D.}, year={2017}, pages={755–768} } @article{inman_jordan_york_jennings_monks_everman_bollman_fowler_cole_soteres_et al._2016, title={Long-Term Management of Palmer Amaranth (Amaranthus palmeri) in Dicamba-Tolerant Cotton}, volume={64}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-15-00058.1}, abstractNote={Research was conducted from 2011 to 2014 to determine weed population dynamics and frequency of glyphosate-resistant (GR) Palmer amaranth with herbicide programs consisting of glyphosate, dicamba, and residual herbicides in dicamba-tolerant cotton. Five treatments were maintained in the same plots over the duration of the experiment: three sequential POST applications of glyphosate with or without pendimethalin plus diuron PRE; three sequential POST applications of glyphosate plus dicamba with and without the PRE herbicides; and a POST application of glyphosate plus dicamba plus acetochlor followed by one or two POST applications of glyphosate plus dicamba without PRE herbicides. Additional treatments included alternating years with three sequential POST applications of glyphosate only and glyphosate plus dicamba POST with and without PRE herbicides. The greatest population of Palmer amaranth was observed when glyphosate was the only POST herbicide throughout the experiment. Although diuron plus pendimethalin PRE in a program with only glyphosate POST improved control during the first 2 yr, these herbicides were ineffective by the final 2 yr on the basis of weed counts from soil cores. The lowest population of Palmer amaranth was observed when glyphosate plus dicamba were applied regardless of PRE herbicides or inclusion of acetochlor POST. Frequency of GR Palmer amaranth was 8% or less when the experiment was initiated. Frequency of GR Palmer amaranth varied by herbicide program during 2012 but was similar among all herbicide programs in 2013 and 2014. Similar frequency of GR Palmer amaranth across all treatments at the end of the experiment most likely resulted from pollen movement from Palmer amaranth treated with glyphosate only to any surviving female plants regardless of PRE or POST treatment. These data suggest that GR Palmer amaranth can be controlled by dicamba and that dicamba is an effective alternative mode of action to glyphosate in fields where GR Palmer amaranth exists.}, number={1}, journal={WEED SCIENCE}, author={Inman, M. D. and Jordan, D. L. and York, A. C. and Jennings, Katherine and Monks, D. W. and Everman, W. J. and Bollman, S. L. and Fowler, J. T. and Cole, R. M. and Soteres, J. K. and et al.}, year={2016}, pages={161–169} }