@article{kim_koo_jur_woodroof_kalanyan_lee_devine_parsons_2012, title={Stable anatase TiO2 coating on quartz fibers by atomic layer deposition for photoactive light-scattering in dye-sensitized solar cells}, volume={4}, ISSN={["2040-3372"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000306324000056&KeyUID=WOS:000306324000056}, DOI={10.1039/c2nr30939d}, abstractNote={Quartz fibers provide a unique high surface-area substrate suitable for conformal coating using atomic layer deposition (ALD), and are compatible with high temperature annealing. This paper shows that the quartz fiber composition stabilizes ALD TiO2 in the anatase phase through TiO2–SiO2 interface formation, even after annealing at 1050 °C. When integrated into a dye-sensitized solar cell, the TiO2-coated quartz fiber mat improves light scattering performance. Results also confirm that annealing at high temperature is necessary for better photoactivity of ALD TiO2, which highlights the significance of quartz fibers as a substrate. The ALD TiO2 coating on quartz fibers also boosts dye adsorption and photocurrent response, pushing the overall efficiency of the dye-cells from 6.5 to 7.4%. The mechanisms for improved cell performance are confirmed using wavelength-dependent incident photon to current efficiency and diffuse light scattering results. The combination of ALD and thermal processing on quartz fibers may enable other device structures for energy conversion and catalytic reaction applications.}, number={15}, journal={NANOSCALE}, author={Kim, Do Han and Koo, Hyung-Jun and Jur, Jesse S. and Woodroof, Mariah and Kalanyan, Berc and Lee, Kyoungmi and Devine, Christina K. and Parsons, Gregory N.}, year={2012}, pages={4731–4738} } @article{lin_woodroof_ji_liang_krause_zhang_2010, title={Effect of Platinum Salt Concentration on the Electrospinning of Polyacrylonitrile/Platinum Acetylacetonate Solution}, volume={116}, ISSN={["1097-4628"]}, url={https://publons.com/publon/6540059/}, DOI={10.1002/app.31616}, abstractNote={Abstract The preparation and characterization of electrospun polyacrylonitrile (PAN)/platinum(II) acetylacetonate composite nanofibers were investigated. The solution properties, such as viscosity, surface tension, and conductivity, of Pt‐acetylacetonate‐added PAN solutions in N,N ‐dimethylformamide were measured, and their influences on the resulting fiber structure were also determined. At low Pt salt concentrations, the addition of Pt salt increased the fiber diameter but did not change the fiber diameter distribution. However, the fiber diameter decreased, and the fiber diameter distribution became broader when the Pt salt concentration went beyond a critical value. The structure of the electrospun fibers was determined by the formation of polymer–salt– solvent interactions, which changed the balance among the viscosity, surface tension, and conductivity of the solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010}, number={2}, journal={JOURNAL OF APPLIED POLYMER SCIENCE}, author={Lin, Zhan and Woodroof, Mariah D. and Ji, Liwen and Liang, Yinzheng and Krause, Wendy and Zhang, Xiangwu}, year={2010}, month={Apr}, pages={895–901} } @article{lin_ji_woodroof_zhang_2010, title={Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries}, volume={195}, ISSN={["1873-2755"]}, url={https://publons.com/publon/6540092/}, DOI={10.1016/j.jpowsour.2010.02.004}, abstractNote={Carbon nanofiber-supported MnOx composites were prepared by electrodepositing MnOx nanoparticles directly onto electrospun carbon nanofibers. The morphology and size of MnOx nanoparticles were controlled by the surface treatment of carbon nanofibers and the electrodeposition duration time. SEM, TEM/EDS, elemental analysis, and XRD were used to study the morphology and composition of MnOx on the nanofibers. The resultant MnOx/carbon nanofiber composites were used directly as the anode material in lithium half cells and their electrochemical performance was characterized. Results show that MnOx/carbon nanofiber composites prepared by different deposition durations have high reversible capacity, good capacity retention, and excellent structural integrity during cycling.}, number={15}, journal={JOURNAL OF POWER SOURCES}, author={Lin, Zhan and Ji, Liwen and Woodroof, Mariah D. and Zhang, Xiangwu}, year={2010}, month={Aug}, pages={5025–5031} } @article{lin_ji_woodroof_yao_krause_zhang_2010, title={Synthesis and Electrocatalysis of Carbon Nanofiber-Supported Platinum by 1-AP Functionalization and Polyol Processing Technique}, volume={114}, ISSN={["1932-7447"]}, url={https://publons.com/publon/6540058/}, DOI={10.1021/jp9096138}, abstractNote={Pt/carbon composite nanofibers were prepared by depositing Pt nanoparticles directly onto electrospun carbon nanofibers using a polyol processing technique. The morphology and size of Pt nanoparticles were controlled by 1-aminopyrene functionalization. The noncovalent functionalization of carbon nanofibers by 1-aminopyrene is simple and can be carried out at ambient temperature without damaging the integrity and electronic structure of the carbon nanofibers. The resulting Pt/carbon composite nanofibers were characterized by running cyclic voltammograms in 0.5 M H2SO4 and 0.125 M CH3OH + 0.2 M H2SO4 solutions. Results show that Pt/carbon composite nanofibers with 1-aminopyrene functionalization have Pt nanoparticles with a smaller size and better distribution compared with those treated with conventional acids. Moreover, Pt/1-aminopyrene-functionalized carbon nanofibers possess the properties of high active surface area, improved performance toward the electrocatalytic oxidation of methanol, and relatively good long-term stability.}, number={9}, journal={JOURNAL OF PHYSICAL CHEMISTRY C}, author={Lin, Zhan and Ji, Liwen and Woodroof, Mariah D. and Yao, Yingfang and Krause, Wendy and Zhang, Xiangwu}, year={2010}, month={Mar}, pages={3791–3797} }