@article{hornstein_charles_franklin_edwards_vintila_kleiner_sederoff_2024, title={IPD3, a master regulator of arbuscular mycorrhizal symbiosis, affects genes for immunity and metabolism of non-host Arabidopsis when restored long after its evolutionary loss}, volume={114}, ISSN={["1573-5028"]}, url={https://doi.org/10.1007/s11103-024-01422-3}, DOI={10.1007/s11103-024-01422-3}, abstractNote={AbstractArbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.}, number={2}, journal={PLANT MOLECULAR BIOLOGY}, author={Hornstein, Eli D. and Charles, Melodi and Franklin, Megan and Edwards, Brianne and Vintila, Simina and Kleiner, Manuel and Sederoff, Heike}, year={2024}, month={Apr} } @article{budnick_franklin_utley_edwards_charles_hornstein_sederoff_2024, title={Long- and short-read sequencing methods discover distinct circular RNA pools in Lotus japonicus}, volume={1}, ISSN={["1940-3372"]}, url={https://doi.org/10.1002/tpg2.20429}, DOI={10.1002/tpg2.20429}, abstractNote={AbstractCircular RNAs (circRNAs) are covalently closed single‐stranded RNAs, generated through a back‐splicing process that links a downstream 5′ site to an upstream 3′ end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high‐confidence circRNA‐expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.}, journal={PLANT GENOME}, author={Budnick, Asa and Franklin, Megan J. and Utley, Delecia and Edwards, Brianne and Charles, Melodi and Hornstein, Eli D. and Sederoff, Heike}, year={2024}, month={Jan} }