@article{ghasemi_guo_darabi_wang_wang_huang_lefler_taussig_chauhan_baucom_et al._2023, title={A multiscale ion diffusion framework sheds light on the diffusion-stability-hysteresis nexus in metal halide perovskites}, ISSN={["1476-4660"]}, DOI={10.1038/s41563-023-01488-2}, abstractNote={Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive. Here we present a multiscale diffusion framework that describes vacancy-mediated halide diffusion in polycrystalline metal halide perovskites, differentiating fast grain boundary diffusivity from volume diffusivity that is two to four orders of magnitude slower. Our results reveal an inverse relationship between the activation energies of grain boundary and volume diffusions, such that stable metal halide perovskites exhibiting smaller volume diffusivities are associated with larger grain boundary diffusivities and reduced hysteresis. The elucidation of multiscale halide diffusion in metal halide perovskites reveals complex inner couplings between ion migration in the volume of grains versus grain boundaries, which in turn can predict the stability and hysteresis of metal halide perovskites, providing a clearer path to addressing the outstanding challenges of the field.}, journal={NATURE MATERIALS}, author={Ghasemi, Masoud and Guo, Boyu and Darabi, Kasra and Wang, Tonghui and Wang, Kai and Huang, Chiung-Wei and Lefler, Benjamin M. and Taussig, Laine and Chauhan, Mihirsinh and Baucom, Garrett and et al.}, year={2023}, month={Feb} } @article{ghasemi_balar_peng_hu_qin_kim_rech_bidwell_mask_mcculloch_et al._2021, title={A molecular interaction-diffusion framework for predicting organic solar cell stability}, volume={20}, ISSN={["1476-4660"]}, DOI={10.1038/s41563-020-00872-6}, abstractNote={Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy E a scales linearly with the enthalpic interaction parameters χ H between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in E a to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.}, number={4}, journal={NATURE MATERIALS}, author={Ghasemi, Masoud and Balar, Nrup and Peng, Zhengxing and Hu, Huawei and Qin, Yunpeng and Kim, Taesoo and Rech, Jeromy J. and Bidwell, Matthew and Mask, Walker and McCulloch, Iain and et al.}, year={2021}, month={Apr}, pages={525-+} } @article{peng_balar_ghasemi_ade_2021, title={Upper and Apparent Lower Critical Solution Temperature Branches in the Phase Diagram of Polymer:Small Molecule Semiconducting Systems}, volume={12}, ISSN={["1948-7185"]}, DOI={10.1021/acs.jpclett.1c02848}, abstractNote={Solution-processable semiconducting materials are complex materials with a wide range of applications. Despite their extensive study and utility, their molecular interactions as manifested, for example, in phase behavior are poorly understood. Here, we aim to understand the phase behavior of conjugated systems by determining phase diagrams spanning extensive temperature ranges for various combinations of the highly disordered semiconducting polymer (PTB7-Th) with crystallizable (IT-M and PC61BM) and noncrystallizable (di-PDI) small molecule acceptors (SMAs), with polystyrene as an amorphous control, a nonsemiconducting commodity polymer. We discover that the apparent binodal of the studied blends frequently consists of an upper critical solution temperature (UCST) and lower critical solution temperature (LCST) branch, exhibiting a sharp kink where the branches join. Our work suggests that phase diagrams might be a probe in combination with sophisticated models to understand the complexity of semiconducting materials, including microstructure and molecular interactions.}, number={44}, journal={JOURNAL OF PHYSICAL CHEMISTRY LETTERS}, author={Peng, Zhengxing and Balar, Nrup and Ghasemi, Masoud and Ade, Harald}, year={2021}, month={Nov}, pages={10845–10853} } @article{hu_ghasemi_peng_zhang_rech_you_yan_ade_2020, title={The Role of Demixing and Crystallization Kinetics on the Stability of Non-Fullerene Organic Solar Cells}, volume={32}, ISSN={["1521-4095"]}, url={https://doi.org/10.1002/adma.202005348}, DOI={10.1002/adma.202005348}, abstractNote={Abstract}, number={49}, journal={ADVANCED MATERIALS}, publisher={Wiley}, author={Hu, Huawei and Ghasemi, Masoud and Peng, Zhengxing and Zhang, Jianquan and Rech, Jeromy James and You, Wei and Yan, He and Ade, Harald}, year={2020}, month={Dec} } @article{carpenter_ghasemi_gann_angunawela_stuard_rech_ritchie_brendan t. o'connor_atkin_you_et al._2019, title={Competition between Exceptionally Long-Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties}, volume={29}, ISSN={["1616-3028"]}, DOI={10.1002/adfm.201806977}, abstractNote={Abstract}, number={5}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Carpenter, Joshua H. and Ghasemi, Masoud and Gann, Eliot and Angunawela, Indunil and Stuard, Samuel J. and Rech, Jeromy James and Ritchie, Earl and Brendan T. O'Connor and Atkin, Joanna and You, Wei and et al.}, year={2019}, month={Feb} } @article{ghasemi_hu_peng_rech_angunawela_carpenter_stuard_wadsworth_mcculloch_you_et al._2019, title={Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells}, volume={3}, ISSN={["2542-4351"]}, DOI={10.1016/j.joule.2019.03.020}, abstractNote={Although non-fullerene small molecular acceptors (NF-SMAs) are dominating current research in organic solar cells (OSCs), measurements of thermodynamics drivers and kinetic factors determining their morphological stability are lacking. Here, we delineate and measure such factors in crystallizable NF-SMA blends and discuss four model systems with respect to their meta-stability and degree of vitrification. We determine for the first time the amorphous-amorphous phase diagram in an NF-SMA system and show that its deep quench depth can result in severe burn-in degradation. We estimate the relative phase behavior of four other materials systems. Additionally, we derive room-temperature diffusion coefficients and conclude that the morphology needs to be stabilized by vitrification corresponding to diffusion constants below 10−22 cm2/s. Our results show that to achieve stability via rational molecular design, the thermodynamics, glass transition temperature, diffusion properties, and related structure-function relations need to be more extensively studied and understood.}, number={5}, journal={JOULE}, author={Ghasemi, Masoud and Hu, Huawei and Peng, Zhengxing and Rech, Jeromy James and Angunawela, Indunil and Carpenter, Joshua H. and Stuard, Samuel J. and Wadsworth, Andrew and McCulloch, Iain and You, Wei and et al.}, year={2019}, month={May}, pages={1328–1348} } @article{hu_ye_ghasemi_balar_rech_stuard_you_brendan t. o'connor_ade_2019, title={Highly Efficient, Stable, and Ductile Ternary Nonfullerene Organic Solar Cells from a Two-Donor Polymer Blend}, volume={31}, ISSN={["1521-4095"]}, url={https://publons.com/wos-op/publon/18518240/}, DOI={10.1002/adma.201808279}, abstractNote={Abstract}, number={17}, journal={ADVANCED MATERIALS}, publisher={Wiley}, author={Hu, Huawei and Ye, Long and Ghasemi, Masoud and Balar, Nrup and Rech, Jeromy James and Stuard, Samuel J. and You, Wei and Brendan T. O'Connor and Ade, Harald}, year={2019}, month={Apr} } @article{dang_wang_ghasemi_tang_de bastiani_aydin_dauzon_barrit_peng_smilgies_et al._2019, title={Multi-cation Synergy Suppresses Phase Segregation in Mixed-Halide Perovskites}, volume={3}, ISSN={["2542-4351"]}, DOI={10.1016/j.joule.2019.05.016}, abstractNote={Mixed lead halide perovskite solar cells have been demonstrated to benefit tremendously from the addition of Cs+ and Rb+, but its root cause is yet to be understood. This hinders further improvement, and processing approaches remain largely empirical. We address the challenge by tracking the solidification of precursors in situ and linking the evolutions of different crystalline phases to the presence of Cs+ and Rb+. In their absence, the perovskite film is inherently unstable, segregating into MA-I- and FA-Br-rich phases. Adding either Cs+ or Rb+ is shown to alter the solidification process of the perovskite films. The optimal addition of both Cs+ and Rb+ drastically suppress phase segregation and promotes the spontaneous formation of the desired α phase. We propose that the synergistic effect is due to the collective benefits of Cs+ and Rb+ on the formation kinetics of the α phase and on the halide distribution throughout the film.}, number={7}, journal={JOULE}, author={Dang, Hoang X. and Wang, Kai and Ghasemi, Masoud and Tang, Ming-Chun and De Bastiani, Michele and Aydin, Erkan and Dauzon, Emilie and Barrit, Dounya and Peng, Jun and Smilgies, Detlef-M and et al.}, year={2019}, month={Jul}, pages={1746–1764} } @article{ye_li_liu_zhang_ghasemi_xiong_hou_ade_2019, title={Quenching to the Percolation Threshold in Organic Solar Cells}, volume={3}, ISSN={["2542-4351"]}, url={https://doi.org/10.1016/j.joule.2018.11.006}, DOI={10.1016/j.joule.2018.11.006}, abstractNote={The general lack of knowing the quench depth and the convolution with key kinetic factors has confounded deeper understanding of the respective importance of these factors in the morphology development of organic solar cells. Here, we determine the quench depth of a high-efficiency system and delineate the need to kinetically quench the mixed domains to a composition close to the percolation threshold. Importantly, the ability to achieve such a quench is very sensitive to structural parameters in polymer solar cells (PSCs) of the polymer PBDB-TF. Only the highest-molecular-weight polymer is able of earlier liquid-solid transition to “lock in” a high-performing PSC morphology with a composition above the miscibility limit and with an efficiency of over 13%. Systems with deep quench depths are therefore sensitive to molecular weight and the kinetic factors of the casting, likely impacting fabrication yield and reliability. They also need to be vitrified for stable performance.}, number={2}, journal={JOULE}, publisher={Elsevier BV}, author={Ye, Long and Li, Sunsun and Liu, Xiaoyu and Zhang, Shaoqing and Ghasemi, Masoud and Xiong, Yuan and Hou, Jianhui and Ade, Harald}, year={2019}, month={Feb}, pages={443–458} } @article{zhu_gadisa_peng_ghasemi_ye_xu_zhao_ade_2019, title={Rational Strategy to Stabilize an Unstable High-Efficiency Binary Nonfullerene Organic Solar Cells with a Third Component}, volume={9}, ISSN={["1614-6840"]}, url={https://doi.org/10.1002/aenm.201900376}, DOI={10.1002/aenm.201900376}, abstractNote={Abstract}, number={20}, journal={ADVANCED ENERGY MATERIALS}, publisher={Wiley}, author={Zhu, Youqin and Gadisa, Abay and Peng, Zhengxing and Ghasemi, Masoud and Ye, Long and Xu, Zheng and Zhao, Suling and Ade, Harald}, year={2019}, month={May} } @article{kim_schaefer_ma_zhao_turner_ghasemi_constantinou_so_yan_gadisa_et al._2019, title={The Critical Impact of Material and Process Compatibility on the Active Layer Morphology and Performance of Organic Ternary Solar Cells}, volume={9}, ISSN={["1614-6840"]}, url={https://doi.org/10.1002/aenm.201802293}, DOI={10.1002/aenm.201802293}, abstractNote={Abstract}, number={2}, journal={ADVANCED ENERGY MATERIALS}, author={Kim, Joo-Hyun and Schaefer, Charley and Ma, Tingxuan and Zhao, Jingbo and Turner, Johnathan and Ghasemi, Masoud and Constantinou, Iordania and So, Franky and Yan, He and Gadisa, Abay and et al.}, year={2019}, month={Jan} } @article{ye_hu_ghasemi_wang_collins_kim_jiang_carpenter_li_li_et al._2018, title={Quantitative relations between interaction parameter, miscibility and function in organic solar cells}, volume={17}, ISSN={["1476-4660"]}, url={https://doi.org/10.1038/s41563-017-0005-1}, DOI={10.1038/s41563-017-0005-1}, abstractNote={Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χ aa (T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative 'constant-kink-saturation' relation between χ aa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χ aa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.}, number={3}, journal={NATURE MATERIALS}, publisher={Springer Nature}, author={Ye, Long and Hu, Huawei and Ghasemi, Masoud and Wang, Tonghui and Collins, Brian A. and Kim, Joo-Hyun and Jiang, Kui and Carpenter, Joshua H. and Li, Hong and Li, Zhengke and et al.}, year={2018}, month={Mar}, pages={253–260} } @article{bin_yang_zhang_ye_ghasem_chen_zhang_zhang_sun_xue_et al._2017, title={9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor}, volume={139}, ISSN={["0002-7863"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=MEDLINE&KeyUT=MEDLINE:28322045&KeyUID=MEDLINE:28322045}, DOI={10.1021/jacs.6b12826}, abstractNote={In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.}, number={14}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, publisher={American Chemical Society (ACS)}, author={Bin, Haijun and Yang, Yankang and Zhang, Zhi-Guo and Ye, Long and Ghasem, Masoud and Chen, Shanshan and Zhang, Yindong and Zhang, Chunfeng and Sun, Chenkai and Xue, Lingwei and et al.}, year={2017}, month={Apr}, pages={5085–5094} } @article{zhao_ye_li_liu_zhang_zhang_ghasemi_he_ade_hou_et al._2017, title={Environmentally-friendly solvent processed fullerenefree organic solar cells enabled by screening halogen-free solvent additives}, volume={60}, ISSN={["2199-4501"]}, url={https://publons.com/wos-op/publon/5290953/}, DOI={10.1007/s40843-017-9080-x}, abstractNote={Though the power conversion efficiencies (PCEs) of organic solar cells (OSCs) have been boosted to 12%, the use of highly pollutive halogenated solvents as the processing solvent significantly hinders the mass production of OSCs. It is thus necessary to achieve high-efficiency OSCs by utilizing the halogen-free and environmentally-friendly solvents. Herein, we applied a halogen-free solvent system (oxylene/1-phenylnaphthalene, XY/PN) for fabricating fullerene-free OSCs, and a high PCE of 11.6% with a notable fill factor (FF) of 72% was achieved based on the PBDB-T:IT-M blend, which is among the top efficiencies of halogen-free solvent processed OSCs. In addition, the influence of different halogen-free solvent additives on the blend morphology and device performance metrics was studied by synchrotron-based tools and other complementary methods. Morphological results indicate the highly ordered molecular packing and highest average domain purity obtained in the blend films prepared by using XY/PN co-solvent are favorable for achieving increased FFs and thus higher PCEs in the devices. Moreover, a lower interaction parameter (χ) of the IT-M:PN pair provides a good explanation for the more favorable morphology and performance in devices with PN as the solvent additive, relative to those with diphenyl ether and N-methylpyrrolidone. Our study demonstrates that carefully screening the non-halogenated solvent additive plays a vital role in realizing the efficient and environmentally-friendly solvent processed OSCs.}, number={8}, journal={SCIENCE CHINA-MATERIALS}, author={Zhao, W. C. and Ye, Long and Li, S. S. and Liu, X. Y. and Zhang, S. Q. and Zhang, Y. and Ghasemi, M. and He, C. and Ade, H. and Hou, J. H. and et al.}, year={2017}, month={Aug}, pages={697–706} } @article{ghasemi_ye_zhang_yan_kim_awartani_you_gadisa_ade_2017, title={Panchromatic Sequentially Cast Ternary Polymer Solar Cells}, volume={29}, ISSN={0935-9648}, url={http://dx.doi.org/10.1002/ADMA.201604603}, DOI={10.1002/adma.201604603}, abstractNote={A sequential-casting ternary method is developed to create stratified bulk heterojunction (BHJ) solar cells, in which the two BHJ layers are spin cast sequentially without the need of adopting a middle electrode and orthogonal solvents. This method is found to be particularly useful for polymers that form a mechanically alloyed morphology due to the high degree of miscibility in the blend.}, number={4}, journal={Advanced Materials}, publisher={Wiley}, author={Ghasemi, Masoud and Ye, Long and Zhang, Qianqian and Yan, Liang and Kim, Joo-Hyun and Awartani, Omar and You, Wei and Gadisa, Abay and Ade, Harald}, year={2017}, month={Jan}, pages={1604603} } @article{ye_xiong_li_ghasemi_balar_turner_gadisa_hou_o’connor_ade_et al._2017, title={Precise Manipulation of Multilength Scale Morphology and Its Influence on Eco-Friendly Printed All-Polymer Solar Cells}, volume={27}, ISSN={1616-301X}, url={http://dx.doi.org/10.1002/ADFM.201702016}, DOI={10.1002/adfm.201702016}, abstractNote={Significant efforts have lead to demonstrations of nonfullerene solar cells (NFSCs) with record power conversion efficiency up to ≈13% for polymer:small molecule blends and ≈9% for all‐polymer blends. However, the control of morphology in NFSCs based on polymer blends is very challenging and a key obstacle to pushing this technology to eventual commercialization. The relations between phases at various length scales and photovoltaic parameters of all‐polymer bulk‐heterojunctions remain poorly understood and seldom explored. Here, precise control over a multilength scale morphology and photovoltaic performance are demonstrated by simply altering the concentration of a green solvent additive used in blade‐coated films. Resonant soft X‐ray scattering is used to elucidate the multiphasic morphology of these printed all‐polymeric films and complements with the use of grazing incidence wide‐angle X‐ray scattering and in situ spectroscopic ellipsometry characterizations to correlate the morphology parameters at different length scales to the device performance metrics. Benefiting from the highest relative volume fraction of small domains, additive‐free solar cells show the best device performance, strengthening the advantage of single benign solvent approach. This study also highlights the importance of high volume fraction of smallest domains in printed NFSCs and organic solar cells in general.}, number={33}, journal={Advanced Functional Materials}, publisher={Wiley}, author={Ye, Long and Xiong, Yuan and Li, Sunsun and Ghasemi, Masoud and Balar, Nrup and Turner, Johnathan and Gadisa, Abay and Hou, Jianhui and O’Connor, Brendan T. and Ade, Harald and et al.}, year={2017}, month={Jul}, pages={1702016} } @article{kim_gadisa_schaefer_yao_gautam_balar_ghasemi_constantinou_so_o'connor_et al._2017, title={Strong polymer molecular weight-dependent material interactions: impact on the formation of the polymer/fullerene bulk heterojunction morphology}, volume={5}, ISSN={2050-7488 2050-7496}, url={http://dx.doi.org/10.1039/C7TA03052E}, DOI={10.1039/c7ta03052e}, abstractNote={The morphological evolution is initiated by L–L or L–S phase separation (left) and further developed by molecular mobility, governed by polymer–solvent interactions which determine the final domain size of the BHJ layer (right).}, number={25}, journal={Journal of Materials Chemistry A}, publisher={Royal Society of Chemistry (RSC)}, author={Kim, Joo-Hyun and Gadisa, Abay and Schaefer, Charley and Yao, Huifeng and Gautam, Bhoj R. and Balar, Nrup and Ghasemi, Masoud and Constantinou, Iordania and So, Franky and O'Connor, Brendan T. and et al.}, year={2017}, pages={13176–13188} } @article{ye_xiong_yao_dinku_zhang_li_ghasemi_balar_hunt_o'connor_et al._2016, title={High Performance Organic Solar Cells Processed by Blade Coating in Air from a Benign Food Additive Solution}, volume={28}, ISSN={0897-4756 1520-5002}, url={http://dx.doi.org/10.1021/ACS.CHEMMATER.6B03083}, DOI={10.1021/acs.chemmater.6b03083}, abstractNote={Solution processable conjugated organic materials have gained tremendous interest motivated by their potential of low cost, lightweight and especially easy manufacturing of large-area and flexible electronics. Toxic halogen-containing solvents have been widely used in the processing of organic electronics, particularly organic photovoltaics (OPVs). To transition this technology to more commercially attractive manufacturing approaches, removing these halogenated solvents remains one of the key challenges. Our morphological (hard/soft X-ray scattering) and calorimetric characterizations reveal that using o-methylanisole, a certified food additive, as processing solvent can achieve similar crystalline properties and domain spacing/purity with that achieved by widely used binary halogenated solvents (chlorobenzene and 1,8-diiodooctane), thus yielding comparable photovoltaic performance in spin-casted films. To move a step forward, we further present the potential of o-methylanisole as processing solvent in th...}, number={20}, journal={Chemistry of Materials}, publisher={Link}, author={Ye, L. and Xiong, Y. and Yao, H. and Dinku, A.G. and Zhang, H. and Li, S. and Ghasemi, M. and Balar, N. and Hunt, A. and O'Connor, B.T. and et al.}, year={2016}, pages={7451–7458} }