@article{malhotra_hosseini_zaferani_hall_vashaee_2020, title={Enhancement of Diffusion, Densification and Solid-State Reactions in Dielectric Materials Due to Interfacial Interaction of Microwave Radiation: Theory and Experiment}, volume={12}, ISSN={["1944-8252"]}, DOI={10.1021/acsami.0c09719}, abstractNote={A detailed theoretical model and experimental study are presented that formulate and prove the existence of a robust ponderomotive force (PMF) near the interfaces in a granular dielectric material under microwave radiation. The model calculations show that the net direction of the PMF is pore angle-dependent. For most of the pore angles, the net force is towards the interface creating a mass transport that fills the interfacial pores and facilitates densification. For small ranges of angles, near 180o and 360o, PMF drives the ions in the reverse direction and depletes the pores. However, the net force for such ranges of angles is small. The PMF also enhances the diffusion of the mobile ionic species and, consequently, accelerates the solid-state reaction by increasing the collision probability. The proof-of-concept experiments show that a mixture of elemental powders can diffuse, react, and form dense materials when radiated by the microwave in just a few minutes. Such characteristics, together with field-induced decrystallization, offer a novel and simple approach for the synthesis of nanostructured compounds, which can have practical implications in ceramic technologies and thermoelectric materials.}, number={45}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Malhotra, Abhishek and Hosseini, Mahshid and Zaferani, Sadeq Hooshmand and Hall, Michael and Vashaee, Daryoosh}, year={2020}, month={Nov}, pages={50941–50952} } @misc{nozariasbmarz_agarwal_coutant_hall_liu_liu_malhotra_norouzzadeh_oeztuerk_ramesh_et al._2017, title={Thermoelectric silicides: A review}, volume={56}, ISSN={["1347-4065"]}, url={http://dx.doi.org/10.7567/jjap.56.05da04}, DOI={10.7567/jjap.56.05da04}, abstractNote={Traditional research on thermoelectric materials focused on improving the figure-of-merit zT to enhance the energy conversion efficiency. With further growth and commercialization of thermoelectric technology beyond niche applications, other factors such as materials availability, toxicity, cost, recyclability, thermal stability, chemical and mechanical properties, and ease of fabrication become important for making viable technologies. Several silicide alloys were identified that have the potential to fulfill these requirements. These materials are of interest due to their abundancy in earth’s crust (e.g., silicon), non-toxicity, and good physical and chemical properties. In this paper, an overview of the silicide thermoelectrics from traditional alloys to advanced material structures is presented. In addition, some of the most effective approaches as well as fundamental physical concepts for designing and developing efficient thermoelectric materials are presented and future perspectives are discussed.}, number={5}, journal={JAPANESE JOURNAL OF APPLIED PHYSICS}, author={Nozariasbmarz, Amin and Agarwal, Aditi and Coutant, Zachary A. and Hall, Michael J. and Liu, Jie and Liu, Runze and Malhotra, Abhishek and Norouzzadeh, Payam and Oeztuerk, Mehmet C. and Ramesh, Viswanath P. and et al.}, year={2017}, month={May} }