@article{haverroth_oliveira_andrade_taggart_mcadam_zsogon_thompson_martins_cardoso_2023, title={Abscisic acid acts essentially on stomata, not on the xylem, to improve drought resistance in tomato}, volume={8}, ISSN={["1365-3040"]}, url={http://dx.doi.org/10.1111/pce.14676}, DOI={10.1111/pce.14676}, abstractNote={Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.}, journal={PLANT CELL AND ENVIRONMENT}, publisher={Wiley}, author={Haverroth, Eduardo J. and Oliveira, Leonardo A. and Andrade, Moab T. and Taggart, Matthew and McAdam, Scott A. M. and Zsogon, Agustin and Thompson, Andrew J. and Martins, Samuel C. V. and Cardoso, Amanda A.}, year={2023}, month={Aug} } @article{twiddy_taggart_reynolds_sharkey_rufty_lobaton_bozkurt_daniele_2022, title={Real-Time Monitoring of Plant Stalk Growth Using a Flexible Printed Circuit Board Sensor}, ISSN={["1930-0395"]}, DOI={10.1109/SENSORS52175.2022.9967167}, abstractNote={Monitoring of plant growth within agriculture is essential for ensuring the survival of crops and optimization of resources in the face of environmental and industrial challenges. Herein, we describe a low-cost and easily deployable flexible circuit board sensor for measurement of plant stalk growth, providing for remote tracking of plant development on an industrial scale. Three circuit topologies and measurement strategies - “ladder-type,” “multiplex-type,” and “mixed-type” - are initially assessed off-plant in a simulated growth experiment. Further development of the “multiplex-type” sensor and on-plant validation demonstrates its ability to quantify stalk growth as a proxy for plant development.}, journal={2022 IEEE SENSORS}, author={Twiddy, Jack and Taggart, Matthew and Reynolds, James and Sharkey, Chris and Rufty, Thomas and Lobaton, Edgar and Bozkurt, Alper and Daniele, Michael}, year={2022} } @article{rosas-anderson_taggart_heitman_miller_sinclair_rufty_2018, title={Partitioning between evaporation and transpiration from Agrostis stolonifera L. during light and dark periods}, volume={260}, ISSN={["1873-2240"]}, DOI={10.1016/j.agrformet.2018.05.018}, abstractNote={Pressures on water availability for irrigation of turfgrasses continue in many parts of the United States as climate and weather patterns shift and populations increase. It is essential to understand underlying factors controlling water loss to more precisely predict irrigation requirements and develop new strategies for improving effective use of water. In this study, we investigate two key components of potential water loss from a bentgrass (Agrostis stolonifera L.) system that have not previously been examined in detail: 1) water loss in darkness, and 2) water loss through evaporation directly from the soil. The experiments were conducted in controlled environment chambers with intact cores from the field. An automated gravimetric system and soil moisture probes allowed precise measurements of water loss over ranges of vapor pressure deficits (VPD). The gravimetric and soil probe results indicated that substantial evapotranspiration occurred in darkness, at rates 40 to 60% of that in the light across VPDs. Simulations using field weather data from dry and humid environments indicated nighttime water loss rates would be expected to be 30 to 40% of that in the light. Using cores treated with a fast-acting, desiccating herbicide that eliminated transpiration but kept core resistances intact, evaporation directly from the soil surface was estimated to account for 40% of total water loss in the light and 60 to 70% in the dark. The results, collectively, indicated that water loss in darkness must be separately accounted for to accurately estimate daily evapotranspiration totals and irrigation requirements. Furthermore, because of the very high potential for evaporative water loss in the light and dark, efforts to improve water use efficiencies in the turfgrass system should include strategies that regulate both transpiration by the plant and evaporation from the soil surface.}, journal={AGRICULTURAL AND FOREST METEOROLOGY}, author={Rosas-Anderson, Pablo and Taggart, Matthew J. and Heitman, Joshua L. and Miller, Grady L. and Sinclair, Thomas R. and Rufty, Thomas W.}, year={2018}, month={Oct}, pages={73–79} } @article{taggart_heitman_vepraskas_burchell_2011, title={Surface shading effects on soil C loss in a temperate muck soil}, volume={163}, ISSN={0016-7061}, url={http://dx.doi.org/10.1016/j.geoderma.2011.04.020}, DOI={10.1016/j.geoderma.2011.04.020}, abstractNote={Histosols are a huge reservoir for C, covering < 1% of the world's land surface but storing up to 12% of total soil C. Thorough comprehension of factors controlling the rate of soil C loss from Histosols is critical for proper management of these C sinks. Two experiments evaluated how formerly cultivated, warm-climate Histosols undergoing wetland restoration respond to decreases in soil temperatures via vegetative shading, under different water table conditions. We compared temperature and soil CO2 efflux differences from intact soil cores under three levels of light reduction in a greenhouse: 0%, 70%, and 90%. Soil in full sun was consistently warmer and showed higher efflux rates than 70% and 90% shade treatments: 4.132, 3.438, and 2.054 μmol CO2 m−2 s−1, respectively. Shade treatments reached peak efflux rates at similar water potential, −2 to − 4 kPa. A field experiment subjected in-situ soil to full sun, 70% light reduction, and light reduction from naturally occurring herbaceous vegetation. Shade treatment effects on soil temperature and C mineralization were evident throughout the growing season. Vegetative shade effects on soil temperature were greatest in August and September when soil under vegetation was 5–11 °C cooler than unshaded soil. Soil CO2 efflux was correlated strongly with soil temperature; daily efflux rates were consistently highest from unshaded soil. Efflux across treatments showed a strong seasonal correlation to soil moisture, increasing as soil dried in response to water table decline. Soil water potential was unaffected by shade treatment, suggesting temperature effects were solely responsible for efflux differences between treatments. All results confirm that surface shading has a strong influence on soil temperatures and C mineralization rates. Management to enhance vegetative shading in wetland restoration projects may be an effective strategy for slowing soil C losses and promoting soil C sequestration when O2 is not limiting.}, number={3-4}, journal={Geoderma}, publisher={Elsevier BV}, author={Taggart, Matthew J. and Heitman, Joshua L. and Vepraskas, Michael J. and Burchell, Michael R.}, year={2011}, month={Jul}, pages={238–246} }