Ming Liu

College of Sciences

Works (3)

Updated: July 5th, 2023 14:46

2022 journal article

Densely methylated DNA traps Methyl-CpG-binding domain protein 2 but permits free diffusion by Methyl-CpG-binding domain protein 3

JOURNAL OF BIOLOGICAL CHEMISTRY, 298(10).

By: G. Leighton*, E. Irvin n, P. Kaur n, M. Liu n, C. You*, D. Bhattaram*, J. Piehler*, R. Riehn n ...

MeSH headings : CpG Islands; DNA Methylation; DNA-Binding Proteins / metabolism; Mi-2 Nucleosome Remodeling and Deacetylase Complex / genetics; Mi-2 Nucleosome Remodeling and Deacetylase Complex / metabolism; Nucleosomes; Protein Binding; Transcription Factors / metabolism; Humans; Single Molecule Imaging
TL;DR: These studies support a model in which MBD2-NuRD strongly localizes to and compacts methylated CpG islands while MBD3-NURD can freely mobilize nucleosomes independent of methylation status. (via Semantic Scholar)
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
14. Life Below Water (OpenAlex)
Sources: Web Of Science, ORCID, NC State University Libraries
Added: August 29, 2022

2021 journal article

TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA

NUCLEIC ACIDS RESEARCH, 49(22), 13000–13018.

By: P. Kaur n, R. Barnes*, H. Pan n, A. Detwiler*, M. Liu n, C. Mahn n, J. Hall n, Z. Messenger n ...

MeSH headings : Animals; DNA / chemistry; DNA / genetics; DNA / metabolism; HeLa Cells; Humans; Mice, Inbred C57BL; Microscopy, Atomic Force; Nucleic Acid Conformation; Protein Binding; Shelterin Complex / genetics; Shelterin Complex / metabolism; Telomere / genetics; Telomere / metabolism; Telomere-Binding Proteins / genetics; Telomere-Binding Proteins / metabolism; Telomeric Repeat Binding Protein 2 / genetics; Telomeric Repeat Binding Protein 2 / metabolism
TL;DR: A molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres is proposed. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries, ORCID
Added: January 18, 2022

2020 journal article

DNA looping by two 5-methylcytosine-binding proteins quantified using nanofluidic devices

EPIGENETICS & CHROMATIN, 13(1).

By: M. Liu n, S. Movahed n, S. Dangi n, H. Pan n, P. Kaur n, S. Bilinovich*, E. Faison*, G. Leighton* ...

author keywords: DNA methylation; MeCP2; MBD2; DNA compaction
MeSH headings : 5-Methylcytosine / chemistry; 5-Methylcytosine / metabolism; Binding Sites; DNA / chemistry; DNA / metabolism; DNA Methylation; DNA-Binding Proteins / chemistry; DNA-Binding Proteins / metabolism; Epigenomics / methods; Humans; Methyl-CpG-Binding Protein 2 / chemistry; Methyl-CpG-Binding Protein 2 / metabolism; Microfluidics / instrumentation; Microfluidics / methods; Microscopy, Atomic Force / methods; Protein Binding
TL;DR: It is demonstrated that ATTO 565-labeled MBD2 is a good candidate as a staining agent for epigenetic mapping and determined that the mechanism for compaction by MeCP2 is the formation of bridges between distant DNA stretches and theformation of loops. (via Semantic Scholar)
Sources: Web Of Science, NC State University Libraries
Added: April 20, 2020

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2025) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.