@article{hickin_kakumanu_schal_2022, title={Effects of Wolbachia elimination and B-vitamin supplementation on bed bug development and reproduction}, volume={12}, ISSN={["2045-2322"]}, url={https://doi.org/10.1038/s41598-022-14505-2}, DOI={10.1038/s41598-022-14505-2}, abstractNote={AbstractObligate blood feeders, such as Cimex lectularius (common bed bug), have symbiotic associations with nutritional endosymbionts that produce B-vitamins. To quantify the symbiont’s contribution to host fitness in these obligate mutualisms, the symbiont must be eliminated and its absence rigorously confirmed. We developed and validated procedures for complete elimination of Wolbachia (Wb) in bed bugs and quantified development and reproduction in bed bugs with and without Wb and with and without B-vitamins supplementation. Aposymbiotic bed bugs had slower nymphal development, reduced adult survivorship, smaller adult size, fewer eggs per female, and lower hatch rate than bed bugs that harbored Wb. In aposymbiotic bed bugs that were fed B-vitamins-supplemented blood, nymph development time, adult survivorship and hatch rate recovered to control levels, but adult size and egg number only partially recovered. These results underscore the nutritional dependence of bed bugs on their Wb symbiont and suggest that Wb may provide additional nutritional benefits beyond the B-vitamin mix that we investigated.}, number={1}, journal={SCIENTIFIC REPORTS}, author={Hickin, Mauri L. and Kakumanu, Madhavi L. and Schal, Coby}, year={2022}, month={Jun} } @article{gonzalez-morales_devries_santangelo_kakumanu_schal_2022, title={Multiple Mechanisms Confer Fipronil Resistance in the German Cockroach: Enhanced Detoxification and Rdl Mutation}, volume={8}, ISSN={["1938-2928"]}, url={https://doi.org/10.1093/jme/tjac100}, DOI={10.1093/jme/tjac100}, abstractNote={Abstract Populations of Blattella germanica (L.) (German cockroach) have been documented worldwide to be resistant to a wide variety of insecticides with multiple modes of action. The phenylpyrazole insecticide fipronil has been used extensively to control German cockroach populations, exclusively in baits, yet the highest reported fipronil resistance is 38-fold in a single population. We evaluated five populations of German cockroaches, collected in 2018–2019 in apartments in North Carolina and assayed in 2019, to determine the status of fipronil resistance in the state. Resistance ratios in field-collected strains ranged from 22.4 to 37.2, indicating little change in fipronil resistance over the past 20 yr. In contrast, resistance to pyrethroids continues to escalate. We also assessed the roles of detoxification enzymes in fipronil resistance with four synergists previously shown to diminish metabolic resistance to various insecticides in German cockroaches—piperonyl butoxide, S,S,S-tributyl phosphorotrithioate, diethyl maleate, and triphenyl phosphate. These enzymes appear to play a variable role in fipronil resistance. We also sequenced a fragment of the Rdl (resistant to dieldrin) gene that encodes a subunit of the GABA receptor. Our findings showed that all field-collected strains are homozygous for a mutation that substitutes serine for an alanine (A302S) in Rdl, and confers low resistance to fipronil. Understanding why cockroaches rapidly evolve high levels of resistance to some insecticides and not others, despite intensive selection pressure, will contribute to more efficacious pest management.}, journal={JOURNAL OF MEDICAL ENTOMOLOGY}, author={Gonzalez-Morales, Maria A. and DeVries, Zachary C. and Santangelo, Richard G. and Kakumanu, Madhavi L. and Schal, Coby}, editor={Booth, WarrenEditor}, year={2022}, month={Aug} } @article{gonzalez-morales_devries_sierras_santangelo_kakumanu_schal_2021, title={Resistance to Fipronil in the Common Bed Bug (Hemiptera: Cimicidae)}, volume={58}, ISSN={["1938-2928"]}, url={https://doi.org/10.1093/jme/tjab040}, DOI={10.1093/jme/tjab040}, abstractNote={AbstractCimex lectularius L. populations have been documented worldwide to be resistant to pyrethroids and neonicotinoids, insecticides that have been widely used to control bed bugs. There is an urgent need to discover new active ingredients with different modes of action to control bed bug populations. Fipronil, a phenylpyrazole that targets the GABA receptor, has been shown to be highly effective on bed bugs. However, because fipronil shares the same target site with dieldrin, we investigated the potential of fipronil resistance in bed bugs. Resistance ratios in eight North American populations and one European population ranged from 1.4- to >985-fold, with highly resistant populations on both continents. We evaluated metabolic resistance mechanisms mediated by cytochrome P450s, esterases, carboxylesterases, and glutathione S-transferases using synergists and a combination of synergists. All four detoxification enzyme classes play significant but variable roles in bed bug resistance to fipronil. Suppression of P450s and esterases with synergists eliminated resistance to fipronil in highly resistant bed bugs. Target-site insensitivity was evaluated by sequencing a fragment of the Rdl gene to detect the A302S mutation, known to confer resistance to dieldrin and fipronil in other species. All nine populations were homozygous for the wild-type genotype (susceptible phenotype). Highly resistant populations were also highly resistant to deltamethrin, suggesting that metabolic enzymes that are responsible for pyrethroid detoxification might also metabolize fipronil. It is imperative to understand the origins of fipronil resistance in the development or adoption of new active ingredients and implementation of integrated pest management programs.}, number={4}, journal={JOURNAL OF MEDICAL ENTOMOLOGY}, publisher={Oxford University Press (OUP)}, author={Gonzalez-Morales, Maria A. and DeVries, Zachary and Sierras, Angela and Santangelo, Richard G. and Kakumanu, Madhavi L. and Schal, Coby}, editor={Hribar, LawrenceEditor}, year={2021}, month={Jul}, pages={1798–1807} } @article{kakumanu_marayati_wada-katsumata_wasserberg_schal_apperson_ponnusamy_2021, title={Sphingobacterium phlebotomi sp. nov., a new member of family Sphingobacteriaceae isolated from sand fly rearing substrate}, volume={71}, ISSN={["1466-5034"]}, url={https://doi.org/10.1099/ijsem.0.004809}, DOI={10.1099/ijsem.0.004809}, abstractNote={A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming, aerobic bacterium, designated type strain SSI9T, was isolated from sand fly (Phlebotomus papatasi Scopoli; Diptera: Psychodidae) rearing substrate and subjected to polyphasic taxonomic analysis. Strain SSI9T contained phosphatidylethanolamine as a major polar lipid, MK-7 as the predominant quinone, and C16 : 1ω6c/C16 : 1ω7c, iso-C15 : 0, iso-C17 : 0 3-OH and C16 : 0 as the major cellular fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that SSI9T represents a member of the genus Sphingobacterium , of the family Sphingobacteriaceae sharing 96.5–88.0 % sequence similarity with other species of the genus Sphingobacterium . The results of multilocus sequence analysis using the concatenated sequences of the housekeeping genes recA, rplC and groL indicated that SSI9T formed a separate branch in the genus Sphingobacterium . The genome of SSI9T is 5 197 142 bp with a DNA G+C content of 41.8 mol% and encodes 4395 predicted coding sequences, 49 tRNAs, and three complete rRNAs and two partial rRNAs. SSI9T could be distinguished from other species of the genus Sphingobacterium with validly published names by several phenotypic, chemotaxonomic and genomic characteristics. On the basis of the results of this polyphasic taxonomic analysis, the bacterial isolate represents a novel species within the genus Sphingobacterium , for which the name Sphingobacterium phlebotomi sp. nov. is proposed. The type strain is SSI9T (=ATCC TSD-210T=LMG 31664T=NRRL B-65603T).}, number={5}, journal={INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY}, author={Kakumanu, Madhavi L. and Marayati, Bahjat Fadi and Wada-Katsumata, Ayako and Wasserberg, Gideon and Schal, Coby and Apperson, Charles S. and Ponnusamy, Loganathan}, year={2021} } @article{kakumanu_marayati_schal_apperson_wasserberg_ponnusamy_2021, title={Oviposition-Site Selection of Phlebotomus papatasi (Diptera: Psychodidae) Sand Flies: Attraction to Bacterial Isolates From an Attractive Rearing Medium}, volume={58}, ISSN={["1938-2928"]}, url={https://doi.org/10.1093/jme/tjaa198}, DOI={10.1093/jme/tjaa198}, abstractNote={Abstract Phlebotomine sand flies are worldwide vectors of Leishmania parasites as well as other bacterial and viral pathogens. Due to the variable impact of traditional vector control practices, a more ecologically based approach is needed. The goal of this study was to isolate bacteria from the most attractive substrate to gravid Phlebotomus papatasi Scopoli sand flies and determine the role of bacterial volatiles in the oviposition attractancy of P. papatasi using behavioral assays. We hypothesized that gravid sand flies are attracted to bacterially derived semiochemical cues associated with breeding sites. Bacteria were isolated from a larvae-conditioned rearing medium, previously shown to be highly attractive to sand flies. The isolated bacteria were identified by amplifying and sequencing 16S rDNA gene fragments, and 12 distinct bacterial species were selected for two-choice olfactometer bioassays. The mix of 12 bacterial isolates elicited strong attraction at the lower concentration of 107 cells per ml and significant repellence at a high concentration of 109 cells per ml. Three individual isolates (SSI-2, SSI-9, and SSI-11) were particularly attractive at low doses. In general, we observed dose-related effects, with some bacterial isolates stimulating negative and some positive dose–response curves in sand fly attraction. Our study confirms the important role of saprophytic bacteria, gut bacteria, or both, in guiding the oviposition-site selection behavior of sand flies. Identifying the specific attractive semiochemical cues that they produce could lead to development of an attractive lure for surveillance and control of sand flies.}, number={2}, journal={JOURNAL OF MEDICAL ENTOMOLOGY}, publisher={Oxford University Press (OUP)}, author={Kakumanu, Madhavi L. and Marayati, Bahjat F. and Schal, Coby and Apperson, Charles S. and Wasserberg, Gideon and Ponnusamy, Loganathan}, editor={Johnson, RichardEditor}, year={2021}, month={Mar}, pages={518–527} } @article{travanty_ponnusamy_kakumanu_nicholson_apperson_2019, title={Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella}, volume={79}, ISSN={["1878-7665"]}, url={https://doi.org/10.1007/s13199-019-00642-2}, DOI={10.1007/s13199-019-00642-2}, number={3}, journal={SYMBIOSIS}, publisher={Springer Science and Business Media LLC}, author={Travanty, Nicholas V. and Ponnusamy, Loganathan and Kakumanu, Madhavi L. and Nicholson, William L. and Apperson, Charles S.}, year={2019}, month={Nov}, pages={239–250} } @article{kakumanu_ma_williams_2019, title={Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world}, volume={9}, ISSN={["2045-2322"]}, DOI={10.1038/s41598-019-46984-1}, abstractNote={AbstractHigh microbial carbon (MBC) demand, a proxy for energy demand (cost), during soil microbial response to stressors such as drought are a major gap in understanding global biogeochemical cycling of carbon (C) and nitrogen (N). The dynamics of two dominant microbial pools (amino acids; AA and exopolymeric substances; EPS) in soils exposed to drying and C and N amendment to mimic both low and high nutrient soil habitats were examined. It was hypothesized that dynamics of EPS and AA (osmolytes) would be greater when soil drying was preceded by a pulse of bioavailable C and N. Drying reduced AA content, even as overall soil MBC increased (~35%). The increase in absolute amounts and mol% of certain AA (eg: Taurine, glutamine, tyrosine, phenylalanine) in the driest treatment (−10 MPa) were similar in both soils regardless of amendment suggesting a common mechanism underlying the energy intensive acclimation across soils. MBC and EPS, both increased ~1.5X and ~3X due to drying and especially drying associated with amendment. Overall major pools of C and N based microbial metabolites are dynamic to drying (drought), and thus have implications for earth’s biogeochemical fluxes of C and N, perhaps costing 4–7% of forest fixed photosynthetic C input during a single drying (drought) period.}, journal={SCIENTIFIC REPORTS}, author={Kakumanu, Madhavi L. and Ma, Li and Williams, Mark A.}, year={2019}, month={Jul} } @article{devries_santangelo_crissman_suazo_kakumanu_schal_2019, title={Pervasive Resistance to Pyrethroids in German Cockroaches (Blattodea: Ectobiidae) Related to Lack of Efficacy of Total Release Foggers}, volume={112}, ISSN={0022-0493 1938-291X}, url={http://dx.doi.org/10.1093/jee/toz120}, DOI={10.1093/jee/toz120}, abstractNote={Abstract Despite limited efficacy data, do-it-yourself (DIY) insecticide products often promise low-cost alternatives to professional pest control. Total release foggers (TRFs, ‘bug bombs’), which are prominent DIY products, were recently shown to be ineffective at reducing German cockroach (Blattella germanica L.) infestations, in contrast to highly effective baits. However, the reason(s) for TRF failure remain unknown. Therefore, we investigated insecticide resistance of apartment-collected cockroaches from homes where TRFs failed. In topical (direct) application assays, resistance to cypermethrin (a common active ingredient in TRFs) was 202 ± 33 times that of a laboratory insecticide-susceptible population (based on LD50 ratios), while resistance to fipronil, a common bait active ingredient, was considerably lower at 14 ± 2 times that of the laboratory insecticide-susceptible population. The addition of PBO, a P450 inhibitor that synergizes pyrethroids, enhanced the efficacy of cypermethrin, but only at high doses of cypermethrin. Additionally, >96% of screened cockroaches possessed at least one copy of the L993F mutation in the voltage-gated sodium channel, known to confer resistance to pyrethroids (knockdown resistance, kdr). Because TRF treatments killed insecticide-susceptible sentinel cockroaches but failed to kill apartment-collected cockroaches, these results suggest that pyrethroid resistance is a major factor contributing to the failure of TRFs. Multiple mechanisms of resistance, including metabolic detoxification of the pyrethroids and kdr mutations that confer target-site insensitivity, suggest that TRFs would lack efficacy against German cockroaches in residential settings, where high levels of pyrethroid resistance have been documented globally.}, number={5}, journal={Journal of Economic Entomology}, publisher={Oxford University Press (OUP)}, author={DeVries, Zachary C and Santangelo, Richard G and Crissman, Jonathan and Suazo, Alonso and Kakumanu, Madhavi L and Schal, Coby}, editor={Rust, MichaelEditor}, year={2019}, month={May}, pages={2295–2301} } @article{kakumanu_maritz_carlton_schal_2018, title={Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches}, volume={84}, ISSN={0099-2240 1098-5336}, url={http://dx.doi.org/10.1128/AEM.01037-18}, DOI={10.1128/AEM.01037-18}, abstractNote={The German cockroach infests diverse human-built structures, including homes and hospitals. It produces potent allergens that trigger asthma and disseminates opportunistic pathogens in its feces. A comprehensive understanding of gut and fecal microbial communities of cockroaches is essential not only to understand their contribution to the biology of the cockroach, but also for exploring their clinical relevance. In this study, we compare the diversity of bacteria and eukaryotes in the cockroach gut and feces and assess the variation in the gut microbiota across cockroach populations.}, number={17}, journal={Applied and Environmental Microbiology}, publisher={American Society for Microbiology}, author={Kakumanu, Madhavi L. and Maritz, Julia M. and Carlton, Jane M. and Schal, Coby}, editor={Stabb, Eric V.Editor}, year={2018}, month={Jun} } @article{kakumanu_ponnusamy_sutton_meshnick_nicholson_apperson_2018, title={Prevalence of Rickettsia Species (Rickettsiales: Rickettsiaceae) in Dermacentor variabilis Ticks (Acari: Ixodidae) in North Carolina}, volume={55}, ISSN={["1938-2928"]}, url={http://dx.doi.org/10.1093/jme/tjy074}, DOI={10.1093/jme/tjy074}, abstractNote={Abstract The American dog tick, Dermacentor variabilis (Say), is a vector of spotted fever group (SFG) rickettsiae, including Rickettsia rickettsii the causative organism of Rocky Mountain spotted fever (RMSF). In North Carolina, SFG rickettsioses (including RMSF) are a leading cause of tick-borne illness. Knowledge of the infection rate and geographic distribution of D. variabilis ticks infected with Rickettsia spp. provides information on the spatial distribution of public health risk. Accordingly, we extracted genomic DNA from adult D. variabilis collected from field habitats in 32 North Carolina counties from 2009 to 2013. A nested PCR assay of the 23S-5S intergenic spacer (IGS) region of Rickettsia coupled with reverse line blot hybridization (RLBH) with species-specific probes was used to detect and identify rickettsiae to species. Approximately half of the 532 tick DNA samples exhibited a band of the expected size on agarose gels, indicating infection with Rickettsia spp. RLBH analyses showed R. amblyommatis (formerly ‘Candidatus R. amblyommii’), R. parkeri, and R. montanensis were predominant, while other Rickettsia species detected included R. conorii-like, R. massiliae, R. rhipicephali, R. canadensis, R. bellii, and some unknown Rickettsia spp. Some ticks were infected with more than one Rickettsia species. Notably, several Rickettsia-positive ticks harbored R. rickettsii. DNA sequencing was performed on a portion of the 23S-5S IGS amplicons and the results were concordant with RLB assay results. We conclude that Rickettsia spp. are common in D. variabilis in North Carolina. Geographic patterns in the occurrence of Rickettsia-infected D. variabilis ticks across the counties sampled are discussed.}, number={5}, journal={JOURNAL OF MEDICAL ENTOMOLOGY}, author={Kakumanu, Madhavi L. and Ponnusamy, Loganathan and Sutton, Haley and Meshnick, Steven R. and Nicholson, William L. and Apperson, Charles S.}, year={2018}, month={Sep}, pages={1284–1291} } @article{kakumanu_ponnusamy_sutton_meshnick_nicholson_apperson_2016, title={Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals}, volume={54}, ISSN={["1098-660X"]}, url={http://dx.doi.org/10.1128/jcm.02605-15}, DOI={10.1128/jcm.02605-15}, abstractNote={ABSTRACT A novel nested PCR assay was developed to detect Rickettsia spp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) of Rickettsia spp. The newly designed primers were evaluated using genomic DNA from 11 Rickettsia species belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to other Rickettsia -specific PCR targets ( ompA , gltA , and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11 Rickettsia spp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from “ Candidatus Rickettsia amblyommii.” Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adult Dermacentor variabilis ticks. The nested 23S-5S IGS assay detected Rickettsia DNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species of Rickettsia . The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species of Rickettsia in the ticks. “ Candidatus Rickettsia amblyommii,”}, number={4}, journal={JOURNAL OF CLINICAL MICROBIOLOGY}, author={Kakumanu, Madhavi L. and Ponnusamy, Loganathan and Sutton, Haley T. and Meshnick, Steven R. and Nicholson, William L. and Apperson, Charles S.}, year={2016}, month={Apr}, pages={972–979} } @article{wallace_nicholson_perniciaro_vaughn_funkhouser_juliano_lee_kakumanu_ponnusamy_apperson_et al._2016, title={Incident Tick-Borne Infections in a Cohort of North Carolina Outdoor Workers}, volume={16}, ISSN={["1557-7759"]}, url={http://dx.doi.org/10.1089/vbz.2015.1887}, DOI={10.1089/vbz.2015.1887}, abstractNote={Tick-borne diseases cause substantial morbidity throughout the United States, and North Carolina has a high incidence of spotted fever rickettsioses and ehrlichiosis, with sporadic cases of Lyme disease. The occupational risk of tick-borne infections among outdoor workers is high, particularly those working on publicly managed lands. This study identified incident tick-borne infections and examined seroconversion risk factors among a cohort of North Carolina outdoor workers. Workers from the North Carolina State Divisions of Forestry, Parks and Recreation, and Wildlife (n = 159) were followed for 2 years in a randomized controlled trial evaluating the effectiveness of long-lasting permethrin-impregnated clothing. Antibody titers against Rickettsia parkeri, Rickettsia rickettsii, "Rickettsia amblyommii," and Ehrlichia chaffeensis were measured at baseline (n = 130), after 1 year (n = 82), and after 2 years (n = 73). Titers against Borrelia burgdorferi were measured at baseline and after 2 years (n = 90). Baseline seroprevalence, defined as indirect immunofluorescence antibody titers of 1/128 or greater, was R. parkeri (24%), R. rickettsii (19%), "R. amblyommii" (12%), and E. chaffeensis (4%). Incident infection was defined as a fourfold increase in titer over a 1-year period. There were 40 total seroconversions to at least one pathogen, including R. parkeri (n = 19), "R. amblyommii" (n = 14), R. rickettsii (n = 9), and E. chaffeensis (n = 8). There were no subjects whose sera were reactive to B. burgdorferi C6 antigen. Thirty-eight of the 40 incident infections were subclinical. The overall risk of infection by any pathogen during the study period was 0.26, and the risk among the NC Division of Forest Resources workers was 1.73 times that of workers in other divisions (95% confidence interval [CI]: 1.02, 2.92). The risk of infection was lower in subjects wearing permethrin-impregnated clothing, but not significantly (risk ratio = 0.81; 95% CI: 0.47, 1.39). In summary, outdoor workers in North Carolina are at high risk of incident tick-borne infections, most of which appear to be asymptomatic.}, number={5}, journal={VECTOR-BORNE AND ZOONOTIC DISEASES}, author={Wallace, John W. and Nicholson, William L. and Perniciaro, Jamie L. and Vaughn, Meagan F. and Funkhouser, Sheana and Juliano, Jonathan J. and Lee, Sangmi and Kakumanu, Madhavi L. and Ponnusamy, Loganathan and Apperson, Charles S. and et al.}, year={2016}, month={May}, pages={302–308} } @article{levine_apperson_levin_kelly_kakumanu_ponnusamy_sutton_salger_caldwell_szempruch_2017, title={Stable Transmission of Borrelia burgdorferi Sensu Stricto on the Outer Banks of North Carolina}, volume={64}, ISSN={1863-1959}, url={http://dx.doi.org/10.1111/zph.12302}, DOI={10.1111/zph.12302}, abstractNote={SummaryThe spirochaete (Borrelia burgdorferi) associated with Lyme disease was detected in questing ticks and rodents during a period of 18 years, 1991–2009, at five locations on the Outer Banks of North Carolina. The black‐legged tick (Ixodes scapularis) was collected at varied intervals between 1991 and 2009 and examined for B. burgdorferi. The white‐footed mouse (Peromyscus leucopus), house mouse (Mus musculus) marsh rice rat (Oryzomys palustris), marsh rabbit (Sylvilagus palustris), eastern cottontail (Sylvilagus floridanus) and six‐lined racerunner (Cnemidophorus sexlineatus) were live‐trapped, and their tissues cultured to isolate spirochaetes. Borrelia burgdorferi isolates were obtained from questing adult I. scapularis and engorged I. scapularis removed from P. leucopus, O. palustris and S. floridanus. The prevalence of B. burgdorferi infection was variable at different times and sites ranging from 7 to 14% of examined questing I. scapularis. Mitochondrial (16S) rRNA gene phylogenetic analysis from 65 adult I. scapularis identified 12 haplotypes in two major clades. Nine haplotypes were associated with northern/Midwestern I. scapularis populations and three with southern I. scapularis populations. Sixteen isolates obtained from tick hosts in 2005 were confirmed to be B. burgdorferi by amplifying and sequencing of 16S rRNA and 5S‐23S intergenic spacer fragments. The sequences had 98–99% identity to B. burgdorferi sensu stricto strains B31, JD1 and M11p. Taken together, these studies indicate that B. burgdorferi sensu stricto is endemic in questing I. scapularis and mammalian tick hosts on the Outer Banks of North Carolina.}, number={5}, journal={Zoonoses and Public Health}, publisher={Wiley}, author={Levine, J. F. and Apperson, C. S. and Levin, M. and Kelly, T. R. and Kakumanu, M. L. and Ponnusamy, L. and Sutton, H. and Salger, S. A. and Caldwell, J. M. and Szempruch, A. J.}, year={2017}, month={Aug}, pages={337–354} } @article{lee_kakumanu_ponnusamy_vaughn_funkhouser_thornton_meshnick_apperson_2014, title={Prevalence of Rickettsiales in ticks removed from the skin of outdoor workers in North Carolina}, volume={7}, ISSN={["1756-3305"]}, url={http://dx.doi.org/10.1186/s13071-014-0607-2}, DOI={10.1186/s13071-014-0607-2}, abstractNote={Tick-transmitted rickettsial diseases, such as ehrlichiosis and spotted fever rickettsiosis, are significant sources of morbidity and mortality in the southern United States. Because of their exposure in tick-infested woodlands, outdoor workers experience an increased risk of infection with tick-borne pathogens. As part of a double blind randomized-controlled field trial of the effectiveness of permethrin-treated clothing in preventing tick bites, we identified tick species removed from the skin of outdoor workers in North Carolina and tested the ticks for Rickettsiales pathogens. Ticks submitted by study participants from April-September 2011 and 2012 were identified to species and life stage, and preliminarily screened for the genus Rickettsia by nested PCR targeting the 17-kDa protein gene. Rickettsia were further identified to species by PCR amplification of 23S-5S intergenic spacer (IGS) fragments combined with reverse line blot hybridization with species-specific probes and through cloning and nucleotide sequence analysis of 23S-5S amplicons. Ticks were examined for Ehrlichia and Anaplasma by nested PCR directed at the gltA, antigen-expressing gene containing a variable number of tandem repeats, 16S rRNA, and groESL genes. The lone star tick (Amblyomma americanum) accounted for 95.0 and 92.9% of ticks submitted in 2011 (n = 423) and 2012 (n = 451), respectively. Specimens of American dog tick (Dermacentor variabilis), Gulf Coast tick (Amblyomma maculatum) and black-legged tick (Ixodes scapularis) were also identified. In both years of our study, 60.9% of ticks tested positive for 17-kDa. “Candidatus Rickettsia amblyommii”, identified in all four tick species, accounted for 90.2% (416/461) of the 23S-5S-positive samples and 52.9% (416/787) of all samples tested. Nucleotide sequence analysis of Rickettsia-specific 23S-5S IGS, ompA and gltA gene fragments indicated that ticks, principally A. americanum, contained novel species of Rickettsia. Other Rickettsiales, including Ehrlichia ewingii, E. chaffeensis, Ehrlichia sp. (Panola Mountain), and Anaplasma phagocytophilum, were infrequently identified, principally in A. americanum. We conclude that in North Carolina, the most common rickettsial exposure is to R. amblyommii carried by A. americanum. Other Rickettsiales bacteria, including novel species of Rickettsia, were less frequently detected in A. americanum but are relevant to public health nevertheless.}, journal={PARASITES & VECTORS}, author={Lee, Sangmi and Kakumanu, Madhavi L. and Ponnusamy, Loganathan and Vaughn, Meagan and Funkhouser, Sheana and Thornton, Haley and Meshnick, Steven R. and Apperson, Charles S.}, year={2014}, month={Dec} }