@misc{molina-bravo_worthington_fernandez_2019, title={Advances and challenges in raspberry and blackberry breeding}, volume={54}, ISBN={9781786762122}, ISSN={2059-6936}, url={http://dx.doi.org/10.19103/AS.2018.0040.27}, DOI={10.19103/AS.2018.0040.27}, journal={Achieving sustainable cultivation of temperate zone tree fruits and berries Volume 2: Case studies}, publisher={Burleigh Dodds Science Publishing}, author={Molina-Bravo, Ramón and Worthington, Margaret Leigh and Fernandez, Gina E.}, year={2019}, month={Jun}, pages={363–396} } @article{petersen_lyerly_worthington_parks_cowger_marshall_brown-guedira_murphy_2015, title={Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat}, volume={128}, ISSN={["1432-2242"]}, DOI={10.1007/s00122-014-2430-8}, abstractNote={A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.}, number={2}, journal={THEORETICAL AND APPLIED GENETICS}, author={Petersen, Stine and Lyerly, Jeanette H. and Worthington, Margaret L. and Parks, Wesley R. and Cowger, Christina and Marshall, David S. and Brown-Guedira, Gina and Murphy, J. Paul}, year={2015}, month={Feb}, pages={303–312} } @article{worthington_reberg-horton_brown-guedira_jordan_weisz_murphy_2015, title={Morphological Traits Associated with Weed-Suppressive Ability of Winter Wheat against Italian Ryegrass}, volume={55}, ISSN={["1435-0653"]}, DOI={10.2135/cropsci2014.02.0149}, abstractNote={ABSTRACT}, number={1}, journal={CROP SCIENCE}, publisher={Crop Science Society of America}, author={Worthington, Margaret and Reberg-Horton, S. Chris and Brown-Guedira, Gina and Jordan, David and Weisz, Randy and Murphy, J. Paul}, year={2015}, pages={50–56} } @article{worthington_reberg-horton_brown-guedira_jordan_weisz_murphy_2015, title={Relative Contributions of Allelopathy and Competitive Traits to the Weed Suppressive Ability of Winter Wheat Lines Against Italian Ryegrass}, volume={55}, ISSN={["1435-0653"]}, DOI={10.2135/cropsci2014.02.0150}, abstractNote={ABSTRACT}, number={1}, journal={CROP SCIENCE}, publisher={Crop Science Society of America}, author={Worthington, Margaret and Reberg-Horton, S. Chris and Brown-Guedira, Gina and Jordan, David and Weisz, Randy and Murphy, J. Paul}, year={2015}, pages={57–64} } @article{worthington_lyerly_petersen_brown-guedira_marshall_cowger_parks_murphy_2014, title={MlUM15: an Aegilops neglecta-derived powdery mildew resistance gene in common wheat}, volume={54}, number={4}, journal={Crop Science}, author={Worthington, M. and Lyerly, J. and Petersen, S. and Brown-Guedira, G. and Marshall, D. and Cowger, C. and Parks, R. and Murphy, J. P.}, year={2014}, pages={1397–1406} } @article{worthington_reberg-horton_jordan_murphy_2013, title={A Comparison of Methods for Evaluating the Suppressive Ability of Winter Wheat Cultivars against Italian Ryegrass (Lolium perenne)}, volume={61}, ISSN={["1550-2759"]}, DOI={10.1614/ws-d-12-00167.1}, abstractNote={Infestations of Italian ryegrass are problematic in both conventional and organic wheat production systems. The development of wheat cultivars with superior competitive ability against Italian ryegrass could play a role in maintaining acceptable yields and suppressing weed populations. Research was conducted in North Carolina to identify indirect methods of selection for Italian ryegrass suppressive ability (hereafter referred to as weed suppressive ability) of winter wheat cultivars that correlate well with Italian ryegrass-to-wheat biomass ratios. Two winter wheat cultivars (Dyna-Gro Baldwin and Dyna-Gro Dominion) and one experimental wheat line (NC05-19684) with differing morphological traits were overseeded with varying densities of Italian ryegrass. Wheat height measured throughout the growing season in weed-free plots was strongly associated with weed suppressive ability, but high wheat tillering capacity had no significant effect on weed suppressive ability in the lines tested in this study. Italian ryegrass seed head density during grain fill was strongly correlated (r= 0.94) with Italian ryegrass-to-wheat biomass ratio, the generally accepted measure of weed suppressive ability. Visual estimates of percent Italian ryegrass biomass relative to the plot with the highest level of Italian ryegrass infestation in each replicate were also strongly correlated with weed suppressive ability at all growth stages, especially during heading (r= 0.87) (Zadoks growth stage [GS] 55). Measurements from nonimaging spectrophotometers and overhead photographs taken from tillering (Zadoks 23 to 25) to early dough development (Zadoks 80) were unreliable estimates of end-of-season Italian ryegrass-to-wheat biomass ratios because they failed to account for wheat cultivar differences in biomass, color, and growth habit. Italian ryegrass seed head density and visual estimates of Italian ryegrass biomass during grain fill are appropriate indirect methods of selection for weed suppressive ability in breeding programs.}, number={3}, journal={WEED SCIENCE}, publisher={Cambridge University Press (CUP)}, author={Worthington, Margaret L. and Reberg-Horton, S. Chris and Jordan, David and Murphy, J. Paul}, year={2013}, pages={491–499} } @misc{worthington_reberg-horton_2013, title={Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability}, volume={39}, ISSN={["1573-1561"]}, DOI={10.1007/s10886-013-0247-6}, abstractNote={Interest in breeding grain crops with improved weed suppressive ability is growing in response to the evolution and rapid expansion of herbicide resistant populations in major weeds of economic importance, environmental concerns, and the unmet needs of organic producers and smallholder farmers without access to herbicides. This review is focused on plant breeding for weed suppression; specifically, field and laboratory screening protocols, genetic studies, and breeding efforts that have been undertaken to improve allelopathy and competition in rice, wheat, and barley. The combined effects of allelopathy and competition determine the weed suppressive potential of a given cultivar, and research groups worldwide have been working to improve both traits simultaneously to achieve maximum gains in weed suppression. Both allelopathy and competitive ability are complex, quantitatively inherited traits that are heavily influenced by environmental factors. Thus, good experimental design and sound breeding procedures are essential to achieve genetic gains. Weed suppressive rice cultivars are now commercially available in the U.S. and China that have resulted from three decades of research. Furthermore, a strong foundation has been laid during the past 10 years for the breeding of weed suppressive wheat and barley cultivars.}, number={2}, journal={JOURNAL OF CHEMICAL ECOLOGY}, publisher={Springer Nature}, author={Worthington, Margaret and Reberg-Horton, Chris}, year={2013}, month={Feb}, pages={213–231} } @inproceedings{petersen_worthington_lyerly_parks_cowger_brown-guedira_marshall_murphy_2013, title={Mapping powdery mildew resistance introgressed from Triticum speltoides}, booktitle={Small Grain Workers Conference}, author={Petersen, S. and Worthington, M. and Lyerly, J. and Parks, R. and Cowger, C. and Brown-Guedira, G. L. and Marshall, D. and Murphy, J. P.}, year={2013} }