@article{barrios_smith_venditti_pal_2024, title={Enzyme-assisted dewatering and strength enhancement of cellulosic fibers for sustainable papermaking: A bench and pilot study}, volume={434}, ISSN={["1879-1786"]}, url={https://doi.org/10.1016/j.jclepro.2023.140094}, DOI={10.1016/j.jclepro.2023.140094}, abstractNote={Water removal during paper manufacturing is of primary importance to production rate and cost efficiency for the pulp and paper industry. It is crucial to develop methods to reduce energy consumption by increasing the percent solids in the paper web entering the dryers from the presses. This research aimed to develop a fundamental understanding of the effect of bio-chemo-mechanical pretreatments on a bleached softwood fiber matrix and evaluate the impact on the percent solids of the paper web after pressing. Experiments included enzymatic, refining, and cationic polymer pretreatments on the bleached softwood pulps, followed by laboratory papermaking and determining the equilibrium moisture content (EMC) after pressing and the pulp and paper properties. The combined effect of mild refining, controlled enzymatic pretreatments, and cationic strength aids proved to enhance the water removal during wet pressing (up to 35 % reduction) and increase paper strength (up to 60 % increase). The results of increased solids after pressing were used to calculate the potential reduction in drying energy during paper manufacturing. Energy savings of around 10 % for paper drying could be achieved through fiber matrix modification by bio-chemo-mechanical pretreatment. Enzymatic pretreatments have previously been conventionally applied before refining as an energy-saving method. However, this research shows that synergistic actions of enzymes added after refining modify the fibers and create the optimal conditions for enhancement in drainage, press dewatering, and paper properties.}, journal={JOURNAL OF CLEANER PRODUCTION}, author={Barrios, Nelson and Smith, Madilynn M. and Venditti, Richard A. and Pal, Lokendra}, year={2024}, month={Jan} } @article{robbins_loudermilk_mozelewski_jones_scheller_2024, title={Fire regimes of the Southern Appalachians may radically shift under climate change}, volume={20}, ISSN={["1933-9747"]}, url={https://doi.org/10.1186/s42408-023-00231-1}, DOI={10.1186/s42408-023-00231-1}, abstractNote={Abstract Background Increased drought due to climate change will alter fire regimes in mesic forested landscapes where fuel moisture typically limits fire spread and where fuel loads are consistently high. These landscapes are often extensively modified by human land use change and management. We forecast the influence of varying climate scenarios on potential shifts in the wildfire regime across the mesic forests of the Southern Appalachians. This area has a long history of fire exclusion, land use change, and an expanding wildland urban interface. We considered interactions among climate, vegetation, and anthropogenic influences to forecast future fire regimes and changes to the forest structure. We used climate scenarios representing divergent drought patterns (overall drought trend and interannual variability) within a process-based fire model that captures the influence of climate, fuels, and fire ignition on wildfire patterns and suppression. Results Compared to simulations using historical climate (1972–2018), future total burned area (2020–2100: 782,302.7 (716,655.0–847,950.3) ha) increased by 42.3% under high drought variability (1,134,888.4 (1,067,437.2–1,202,339.6) ha), 104.8% under a substantial increase in drought trend (1,602,085.7 (1,511,837.5–1,692,334.0) ha), and 484.7% when combined (4,573,925.0 (4,434,910.5–4,712,939.5) ha). Landscape patterns of fire exclusion and suppression drove the spatial variability of fire return intervals (FRI). Our projections indicate wide spatial variability in future fire regimes with some areas experiencing multiple fires per decade while others experience no fire. More frequent fires corresponded with increased oak prevalence and a reduction in the biomass of mesic hardwoods and maple; however, mesic hardwoods remained prevalent under all fire intervals because of their contemporary dominance. Conclusions Our study illustrates how future drought–fire–management interactions and a history of fire exclusion could alter future fire regimes and tree species composition. We find that increasing trends in drought magnitude and variability may increase wildfire activity, particularly in areas with minimal fire suppression. In ecosystems where fuel moisture (and not load) is the standard limitation to fire spread, increased pulses of drought may provide the conditions for more fire activity, regardless of effects on fuel loading. We conclude the effects of climate and human management will determine the novel conditions for both fire regime and ecosystem structure. }, number={1}, journal={FIRE ECOLOGY}, author={Robbins, Zachary J. and Loudermilk, E. Louise and Mozelewski, Tina G. and Jones, Kate and Scheller, Robert M.}, year={2024}, month={Jan} } @article{dieffenderfer_brewer_noonan_smith_eichenlaub_haley_jacks_lobaton_neupert_hess_et al._2023, title={A Wearable System for Continuous Monitoring and Assessment of Speech, Gait, and Cognitive Decline for Early Diagnosis of ADRD}, ISSN={["1558-4615"]}, DOI={10.1109/EMBC40787.2023.10339986}, abstractNote={Early detection of cognitive decline is essential to study mild cognitive impairment and Alzheimer’s Disease in order to develop targeted interventions and prevent or stop the progression of dementia. This requires continuous and longitudinal assessment and tracking of the related physiological and behavioral changes during daily life. In this paper, we present a low cost and low power wearable system custom designed to track the trends in speech, gait, and cognitive stress while also considering the important human factor needs such as privacy and compliance. In the form factors of a wristband and waist-patch, this multimodal, multi-sensor system measures inertial signals, sound, heart rate, electrodermal activity and pulse transit time. A total power consumption of 2.6 mW without any duty cycling allows for more than 3 weeks of run time between charges when 1500 mAh batteries are used.Clinical Relevance— Much earlier detection of Alzheimer’s disease and related dementias may be possible by continuous monitoring of physiological and behavioral state using application specific wearable sensors during the activities of daily life.}, journal={2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC}, author={Dieffenderfer, James and Brewer, Alec and Noonan, Maxwell A. and Smith, Madeline and Eichenlaub, Emily and Haley, Katarina L. and Jacks, Adam and Lobaton, Edgar and Neupert, Shevaun D. and Hess, Thomas M. and et al.}, year={2023} } @article{smith_zambrano_ankeny_daystar_pires_pawlak_venditti_2024, title={Aquatic Aerobic Biodegradation of Commonly Flushed Materials in Aerobic Wastewater Treatment Plant Solids, Seawater, and Lakewater}, volume={19}, ISSN={["1930-2126"]}, url={http://dx.doi.org/10.15376/biores.19.1.1150-1164}, DOI={10.15376/biores.19.1.1150-1164}, abstractNote={Microfibers and microplastics originating from wastewater treatment plant (WWTP) effluents are significant pollutants in freshwater sources and marine environments. This research investigated the biodegradation of cotton microfibers generated from bleached cotton jersey knit fabric and commercially available flushable wipes, polypropylene-based (PP) nonwoven wipes containing a cellulose component, and tissue paper. Biodegradation was tested in wastewater treatment plants (WWTP) solids, seawater, and lakewater according to the ISO 14852 and ASTM D6691 standard methods in an ECHO respirometer. Degradation experiments continued until a plateau in CO2 emissions was reached, and the final biodegradation extent was calculated relative to the theoretical CO2 produced based on elemental analysis. The results showed that the cotton and other cellulosic materials/components biodegrade to a great extent, as expected for all conditions, whereas the PP did not degrade. In general, for the cellulose polypropylene composite wipes, the cellulose biodegraded readily; the presence of the PP did not hinder the cellulose biodegradation.}, number={1}, journal={BIORESOURCES}, author={Smith, Madilynn M. and Zambrano, Marielis and Ankeny, Mary and Daystar, Jesse and Pires, Steven and Pawlak, Joel and Venditti, Richard A.}, year={2024}, month={Feb}, pages={1150–1164} } @inbook{smith_carlton_ormond_2020, title={Evaluating the Material-Level Performance of Particulate-Blocking Firefighter Hoods}, url={https://doi.org/10.1520/STP162420190091}, DOI={10.1520/STP162420190091}, booktitle={Performance of Protective Clothing and Equipment: Innovative Solutions to Evolving Challenges}, publisher={ASTM International}, author={Smith, Madilynn McCollum and Carlton, Nigel P. and Ormond, R. Bryan}, year={2020}, month={Sep}, pages={114–130} }