@article{rajabu_dallas_chiunga_de leon_ateka_tairo_ndunguru_ascencio-ibanez_hanley-bowdoin_2023, title={SEGS-1 a cassava genomic sequence increases the severity of African cassava mosaic virus infection in Arabidopsis thaliana}, volume={14}, ISSN={["1664-462X"]}, DOI={10.3389/fpls.2023.1250105}, abstractNote={Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.}, journal={FRONTIERS IN PLANT SCIENCE}, author={Rajabu, Cyprian A. and Dallas, Mary M. and Chiunga, Evangelista and De Leon, Leandro and Ateka, Elijah M. and Tairo, Fred and Ndunguru, Joseph and Ascencio-Ibanez, Jose T. and Hanley-Bowdoin, Linda}, year={2023}, month={Oct} } @article{peng_dallas_ascencio-ibanez_hoyer_legg_hanley-bowdoin_grieve_yin_2022, title={Early detection of plant virus infection using multispectral imaging and spatial-spectral machine learning}, volume={12}, ISSN={["2045-2322"]}, DOI={10.1038/s41598-022-06372-8}, abstractNote={Abstract}, number={1}, journal={SCIENTIFIC REPORTS}, author={Peng, Yao and Dallas, Mary M. and Ascencio-Ibanez, Jose T. and Hoyer, J. Steen and Legg, James and Hanley-Bowdoin, Linda and Grieve, Bruce and Yin, Hujun}, year={2022}, month={Feb} } @article{aimone_de leon_dallas_ndunguru_ascencio-ibanez_hanley-bowdoin_2021, title={A New Type of Satellite Associated with Cassava Mosaic Begomoviruses}, volume={95}, ISSN={["1098-5514"]}, DOI={10.1128/JVI.00432-21}, abstractNote={Cassava is an important root crop in the developing world and a food and income crop for more than 300 million African farmers. Cassava is rising in global importance and trade as the demands for biofuels and commercial starch increase.}, number={21}, journal={JOURNAL OF VIROLOGY}, author={Aimone, Catherine D. and De Leon, Leandro and Dallas, Mary M. and Ndunguru, Joseph and Ascencio-Ibanez, Jose T. and Hanley-Bowdoin, Linda}, year={2021}, month={Nov} } @article{hoyer_fondong_dallas_aimone_deppong_duffy_hanley-bowdoin_2020, title={Deeply Sequenced Infectious Clones of Key Cassava Begomovirus Isolates from Cameroon}, volume={9}, ISSN={["2576-098X"]}, DOI={10.1128/MRA.00802-20}, abstractNote={We deeply sequenced two pairs of widely used infectious clones (4 plasmids) of the bipartite begomoviruses African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV). The ACMV clones were quite divergent from published sequences. Raw reads, consensus plasmid sequences, and the infectious clones themselves are all publicly available.}, number={46}, journal={MICROBIOLOGY RESOURCE ANNOUNCEMENTS}, author={Hoyer, J. Steen and Fondong, Vincent N. and Dallas, Mary M. and Aimone, Catherine Doyle and Deppong, David O. and Duffy, Siobain and Hanley-Bowdoin, Linda}, year={2020}, month={Nov} } @article{shen_dallas_goshe_hanley-bowdoin_2014, title={SnRK1 Phosphorylation of AL2 Delays Cabbage Leaf Curl Virus Infection in Arabidopsis}, volume={88}, ISSN={["1098-5514"]}, DOI={10.1128/jvi.00761-14}, abstractNote={ABSTRACT}, number={18}, journal={JOURNAL OF VIROLOGY}, author={Shen, Wei and Dallas, Mary Beth and Goshe, Michael B. and Hanley-Bowdoin, Linda}, year={2014}, month={Sep}, pages={10598–10612} } @article{reyes_nash_dallas_ascencio-ibanez_hanley-bowdoin_2013, title={Peptide Aptamers That Bind to Geminivirus Replication Proteins Confer a Resistance Phenotype to Tomato Yellow Leaf Curl Virus and Tomato Mottle Virus Infection in Tomato}, volume={87}, ISSN={["1098-5514"]}, DOI={10.1128/jvi.01095-13}, abstractNote={ABSTRACT}, number={17}, journal={JOURNAL OF VIROLOGY}, author={Reyes, Maria Ines and Nash, Tara E. and Dallas, Mary M. and Ascencio-Ibanez, J. Trinidad and Hanley-Bowdoin, Linda}, year={2013}, month={Sep}, pages={9691–9706} } @article{sanchez-duran_dallas_ascencio-ibanez_reyes_arroyo-mateos_ruiz-albert_hanley-bowdoin_bejarano_2011, title={Interaction between Geminivirus Replication Protein and the SUMO-Conjugating Enzyme Is Required for Viral Infection}, volume={85}, ISSN={["1098-5514"]}, DOI={10.1128/jvi.02566-10}, abstractNote={ABSTRACT}, number={19}, journal={JOURNAL OF VIROLOGY}, author={Sanchez-Duran, Miguel A. and Dallas, Mary B. and Ascencio-Ibanez, Jose T. and Reyes, Maria Ines and Arroyo-Mateos, Manuel and Ruiz-Albert, Javier and Hanley-Bowdoin, Linda and Bejarano, Eduardo R.}, year={2011}, month={Oct}, pages={9789–9800} }