Mohammad Farazmand Anderson, W., & Farazmand, M. (2024). Fast and scalable computation of shape-morphing nonlinear solutions with application to evolutional neural networks. JOURNAL OF COMPUTATIONAL PHYSICS, 498. https://doi.org/10.1016/j.jcp.2023.112649 Anderson, W., & Farazmand, M. (2024). Fisher information and shape-morphing modes for solving the Fokker-Planck equation in higher dimensions. APPLIED MATHEMATICS AND COMPUTATION, 467. https://doi.org/10.1016/j.amc.2023.128489 Mamis, K., & Farazmand, M. (2023). Stochastic compartmental models of the COVID-19 pandemic must have temporally correlated uncertainties. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 479(2269). https://doi.org/10.1098/rspa.2022.0568 Farazmand, M., & Saibaba, A. K. (2023). Tensor-based flow reconstruction from optimally located sensor measurements. JOURNAL OF FLUID MECHANICS, 962. https://doi.org/10.1017/jfm.2023.269 Anderson, W., & Farazmand, M. (2022). EVOLUTION OF NONLINEAR REDUCED-ORDER SOLUTIONS FOR PDEs WITH CONSERVED QUANTITIES. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 44(1), A176–A197. https://doi.org/10.1137/21M1415972 Asch, A., J. Brady, E., Gallardo, H., Hood, J., Chu, B., & Farazmand, M. (2022). Model-assisted deep learning of rare extreme events from partial observations. CHAOS, 32(4). https://doi.org/10.1063/5.0077646 Mendez, A., & Farazmand, M. (2022). Quantifying rare events in spotting: How far do wildfires spread? FIRE SAFETY JOURNAL, 132. https://doi.org/10.1016/j.firesaf.2022.103630 Anderson, W., & Farazmand, M. (2022, April 25). Shape-morphing reduced-order models for nonlinear Schrodinger equations. NONLINEAR DYNAMICS, Vol. 4. https://doi.org/10.1007/s11071-022-07448-w Chu, B., & Farazmand, M. (2021). Data-driven prediction of multistable systems from sparse measurements. CHAOS, 31(6). https://doi.org/10.1063/5.0046203 Anderson, W., & Farazmand, M. (2021). Evolution of nonlinear reduced-order solutions for PDEs with conserved quantities. SIAM J. on Scientific Computing, In Press. Retrieved from https://arxiv.org/abs/2104.13515 Mendez, A., & Farazmand, M. (2021). Investigating climate tipping points under various emission reduction and carbon capture scenarios with a stochastic climate model. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 477(2256). https://doi.org/10.1098/rspa.2021.0697 Mamis, K., & Farazmand, M. (2021). Mitigation of rare events in multistable systems driven by correlated noise. PHYSICAL REVIEW E, 104(3). https://doi.org/10.1103/PhysRevE.104.034201 Farazmand, M. (2020). MULTISCALE ANALYSIS OF ACCELERATED GRADIENT METHODS. SIAM JOURNAL ON OPTIMIZATION, 30(3), 2337–2354. https://doi.org/10.1137/18M1203997 Farazmand, M. (2020). Mitigation of tipping point transitions by time-delay feedback control. CHAOS, 30(1). https://doi.org/10.1063/1.5137825 Katsanoulis, S., Farazmand, M., Serra, M., & Haller, G. (2020). Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows. PHYSICAL REVIEW FLUIDS, 5(2). https://doi.org/10.1103/PhysRevFluids.5.024701 Are extreme dissipation events predictable in turbulent fluid flows? (2019). Physical Review Fluids. https://doi.org/10.1103/physrevfluids.4.044606 Farazmand, M., & Sapsis, T. P. (2019). Closed-loop adaptive control of extreme events in a turbulent flow. PHYSICAL REVIEW E, 100(3). https://doi.org/10.1103/PhysRevE.100.033110 Closure to “Discussion of ‘Extreme Events: Mechanisms and Prediction’” (Grigoriu, M. D., and Uy, W. I. T., ASME Appl. Mech. Rev., 2019, 71(5), p. 055501). (2019). Applied Mechanics Reviews. https://doi.org/10.1115/1.4043632 Farazmand, M., & Sapsis, T. P. (2019). Extreme Events: Mechanisms and Prediction. Applied Mechanics Reviews, 71(5). https://doi.org/10.1115/1.4042065 Farazmand, M. (2019). Mitigation of tipping point transitions by time-delay feedback control. ArXiv Preprint ArXiv:1911.05292. Farazmand, M., & Sapsis, T. (2019). Surface Waves Enhance Particle Dispersion. Fluids. https://doi.org/10.3390/fluids4010055 Farazmand, M., & Sapsis, T. (2018). Physics-based probing and prediction of extreme events. SIAM News, 51(1), 1, 3. Retrieved from https://www.researchgate.net/profile/Mohammad_Farazmand/publication/323245041_Physics-based_probing_and_prediction_of_extreme_events/links/5a887e4daca272017e5f5bef/Physics-based-probing-and-prediction-of-extreme-events.pdf A critical comparison of Lagrangian methods for coherent structure detection. (2017). Chaos: An Interdisciplinary Journal of Nonlinear Science. https://doi.org/10.1063/1.4982720 Farazmand, M., & Sapsis, T. P. (2017). A variational approach to probing extreme events in turbulent dynamical systems. Science Advances, 3(9), e1701533. https://doi.org/10.1126/sciadv.1701533 Optimal initial condition of passive tracers for their maximal mixing in finite time. (2017). Physical Review Fluids. https://doi.org/10.1103/physrevfluids.2.054601 Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents. (2017). Chaos: An Interdisciplinary Journal of Nonlinear Science. https://doi.org/10.1063/1.4984627 Reduced-order prediction of rogue waves in two-dimensional deep-water waves. (2017). Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2017.03.054 Relative periodic orbits form the backbone of turbulent pipe flow. (2017). Journal of Fluid Mechanics. https://doi.org/10.1017/jfm.2017.699 An adjoint-based approach for finding invariant solutions of Navier–Stokes equations. (2016). Journal of Fluid Mechanics. https://doi.org/10.1017/jfm.2016.203 Haller, G., Hadjighasem, A., Farazmand, M., & Huhn, F. (2016). Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795, 136–173. https://doi.org/10.1017/jfm.2016.151 Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems. (2016). Physical Review E. https://doi.org/10.1103/physreve.94.032212 Fedele, F., Chandre, C., & Farazmand, M. (2016). Kinematics of fluid particles on the sea surface: Hamiltonian theory. Journal of Fluid Mechanics, 801, 260–288. https://doi.org/10.1017/jfm.2016.453 Farazmand, M., & Haller, G. (2016). Polar rotation angle identifies elliptic islands in unsteady dynamical systems. Physica D: Nonlinear Phenomena, 315, 1–12. https://doi.org/10.1016/j.physd.2015.09.007 Langlois, G. P., Farazmand, M., & Haller, G. (2015). Asymptotic Dynamics of Inertial Particles with Memory. Journal of Nonlinear Science, 25(6), 1225–1255. https://doi.org/10.1007/s00332-015-9250-0 Karrasch, D., Farazmand, M., & Haller, G. (2015). Attraction-based computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2(1), 83–93. https://doi.org/10.3934/jcd.2015.2.83 Beron-Vera, F. J., Olascoaga, M. J., Haller, G., Farazmand, M., Triñanes, J., & Wang, Y. (2015). Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(8), 087412. https://doi.org/10.1063/1.4928693 Farazmand, M., & Haller, G. (2014). How coherent are the vortices of two-dimensional turbulence? ArXiv Preprint ArXiv:1402.4835. Farazmand, M., Blazevski, D., & Haller, G. (2014). Shearless transport barriers in unsteady two-dimensional flows and maps. Physica D, 278-279, 44–57. https://doi.org/10.1016/j.physd.2014.03.008 Farazmand, M., & Haller, G. (2014). The Maxey-Riley Equation: Existence, Uniqueness and Regularity of Solutions. J. Nonliner Analysis-B. https://doi.org/10.1016/j.nonrwa.2014.08.002 Farazmand, M., & Haller, G. (2013). Attracting and repelling Lagrangian coherent structures from a single computation. Chaos, 15, 023101. https://doi.org/10.1063/1.4800210 Hadjighasem, A., Farazmand, M., & Haller, G. (2013). Detecting invariant manifolds, attractors, and generalized KAM tori in aperiodically forced mechanical systems. Nonlinear Dynamics, 73(1-2), 689–704. https://doi.org/10.1007/s11071-013-0823-x Farazmand, M., & Haller, G. (2012). Computing Lagrangian Coherent Structures from their variational theory. Chaos, 22, 013128. https://doi.org/10.1063/1.3690153 Farazmand, M., & Haller, G. (2012). Erratum and addendum to ``A variational theory of hyperbolic Lagrangian coherent structures, Physica D 240 (2011) 574-598''. Physica D, 241, 439–441. https://doi.org/https://doi.org/10.1016/j.physd.2011.09.013 Farazmand, M., Kevlahan, N. K.-R., & Protas, B. (2011). Controlling the dual cascade of two-dimensional turbulence. J. Fluid Mech., 668, 202–222. https://doi.org/10.1017/S0022112010004635