@article{oh_mengist_ma_giongo_pottorff_spencer_perkins-veazie_iorizzo_2025, title={Unraveling the genetic architecture of blueberry fruit quality traits: major loci control organic acid content while more complex genetic mechanisms control texture and sugar content}, volume={25}, ISSN={["1471-2229"]}, DOI={10.1186/s12870-025-06061-4}, abstractNote={Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay. As the genetic mechanisms that determine these fruit quality traits remain largely unknown, in this study, an F1 mapping population was used to perform quantitative trait loci (QTL) mapping for pH, titratable acidity (TA), organic acids, total soluble solids (TSS), sugars, fruit size, and texture at harvest and/or post-storage and weight loss. Twenty-eight QTLs were detected for acidity-related parameters (pH, TA, and organic acid content). Six QTLs for pH, TA, and citric acid, two for quinic acid, and two for shikimic acid with major effects were consistently detected across two years on the same genomic regions on chromosomes 3, 4, and 5, respectively. Putative candidate genes for these QTLs were also identified using comparative transcriptomic analysis. No QTL was detected for malic acid content, TSS, or individual sugar content. A total of 146 QTLs with minor effects were identified for texture- and size-related parameters. With a few exceptions, these QTLs were generally inconsistent over years and post-storage, indicating a highly quantitative nature. Our findings enhance the understanding of the genetic basis underlying fruit quality traits in blueberry and guide future work to exploit DNA-informed selection strategies in blueberry breeding programs. The major-effect QTLs identified for acidity-related fruit characteristics could be potential targets to develop DNA markers for marker-assisted selection (MAS). On the other hand, genomic selection may be a more suitable approach than MAS when targeting fruit texture, sugars, or size.}, number={1}, journal={BMC PLANT BIOLOGY}, author={Oh, Heeduk and Mengist, Molla F. and Ma, Guoying and Giongo, Lara and Pottorff, Marti and Spencer, Jessica A. and Perkins-Veazie, Penelope and Iorizzo, Massimo}, year={2025}, month={Jan} } @article{mengist_pottorff_mackey_ferrao_casorzo_lila_luby_giongo_perkins-veazie_bassil_et al._2024, title={Assessing predictability of post-storage texture and appearance characteristics in blueberry at breeding population level}, volume={214}, ISSN={["1873-2356"]}, DOI={10.1016/j.postharvbio.2024.112964}, journal={POSTHARVEST BIOLOGY AND TECHNOLOGY}, author={Mengist, Molla F. and Pottorff, Marti and Mackey, Ted and Ferrao, Felipe and Casorzo, Gonzalo and Lila, Mary Ann and Luby, Claire and Giongo, Lara and Perkins-Veazie, Penelope and Bassil, Nahla and et al.}, year={2024}, month={Aug} } @article{ferrao_azevedo_benevenuto_mengist_luby_pottorff_casorzo_mackey_lila_giongo_et al._2024, title={Inference of the genetic basis of fruit texture in highbush blueberries using genome-wide association analyses}, volume={11}, ISSN={["2052-7276"]}, DOI={10.1093/hr/uhae233}, abstractNote={The global production and consumption of blueberry (}, number={10}, journal={HORTICULTURE RESEARCH}, author={Ferrao, Luis Felipe V and Azevedo, Camila and Benevenuto, Juliana and Mengist, Molla Fentie and Luby, Claire and Pottorff, Marti and Casorzo, Gonzalo I. P. and Mackey, Ted and Lila, Mary Ann and Giongo, Lara and et al.}, year={2024}, month={Oct} } @article{canales_gallardo_iorizzo_munoz_ferra_luby_bassil_pottorff_perkins-veazie_sandefur_et al._2024, title={Willingness to Pay for Blueberries: Sensory Attributes, Fruit Quality Traits, and Consumers' Characteristics}, volume={59}, ISSN={["2327-9834"]}, DOI={10.21273/HORTSCI17947-24}, abstractNote={Understanding consumers’ preferences for fruit quality attributes is key to informing breeding efforts, meeting consumer preferences, and promoting increased market demand. The objective of this study was to assess the effect of fruit quality traits and hedonic sensory evaluation on consumers’ willingness to pay (WTP) for a selection of fresh northern and southern highbush blueberry cultivars. The WTP was elicited by using a double-bounded contingent valuation conducted in conjunction with a consumer sensory test. Two types of models were estimated using either sensory evaluations (i.e., consumer preference and consumer intensity) or instrumental measurement data (i.e., measures of soluble solids, titratable acidity, sugars, acids, and firmness) as explanatory variables to model WTP. Results using sensory evaluations indicated that flavor liking, flavor intensity, and sweetness intensity are key factors that influence consumers’ acceptance and WTP for blueberries. A regression analysis using instrumental measurements indicated that measures related to sweetness and acidity traits are important factors that determine WTP. Higher WTP was associated with higher total sugar content across different levels of total organic acid. The WTP increases with organic acid content, because this is needed for enhanced flavor; however, WTP declines at high concentrations of organic acid. Except for extreme values of firmness, the WTP increased as measures of fruit firmness increased, indicating a consumer preference for firmer blueberries. Overall, the results provided new insights into the relationships between consumer preference and WTP and fruit quality benchmarks to select for improved quality.}, number={8}, journal={HORTSCIENCE}, author={Canales, Elizabeth and Gallardo, R. Karina and Iorizzo, Massimo and Munoz, Patricio and Ferra, Luis Felipe and Luby, Claire and Bassil, Nahla and Pottorff, Marti and Perkins-Veazie, Penelope and Sandefur, Paul and et al.}, year={2024}, month={Aug}, pages={1207–1218} } @article{oh_pottorff_giongo_mainland_iorizzo_perkins-veazie_2024, title={Exploring shelf-life predictability of appearance traits and fruit texture in blueberry}, volume={208}, ISSN={["1873-2356"]}, DOI={10.1016/j.postharvbio.2023.112643}, abstractNote={Improving the shelf-life of blueberries (Vaccinium spp.) has become a crucial breeding priority for the industry. However, the breeders have sparse empirical data to select genotypes with extended shelf-life. In this study, a large set of cultivars was evaluated for mechanical texture and appearance characteristics at harvest and after storage to understand their relationship and test multiple statistical models to assess the predictability of shelf-life. Blueberries harvested from 61 cultivars with extensive phenotypic variation were stored at 2 oC and 80% relative humidity (RH) for six weeks. The results indicated that weight loss, texture change, and fruit wrinkling could be predicted using fruit characteristics measured at harvest (T0) or two weeks post-harvest (T2). The berry size at T0 was able to predict postharvest weight loss with high accuracy; the larger the initial berry size, the less weight loss. This trend plateaued with berries larger than 18 mm in diameter. For texture, the measurements at T0 and six weeks after storage (T6) were positively correlated in all mechanical texture parameters, indicating that the initial texture is highly related to the final texture after storage. The overall change of texture could be best predicted using the texture parameter ‘distance to maximum force’ (DFM) measured at T0. Although the prediction accuracy was relatively low (R2 = 0.34), the model still effectively predicted the cultivars with the most texture change and those with the least. Interestingly, the prediction power improved to a moderate level (R2 = 0.45–0.66) when using all the texture and appearance parameters measured at T0 and T2. Wrinkling was best predicted by either the initial fruit size or the texture parameter ‘force linear distance’ (FLD) with low accuracy (R2 = 0.35–0.37); the larger the berry or FLD at T0, the less wrinkle after storage. These findings provide empirical data that blueberry breeders could use to select for shelf-life in blueberry. Predicting the variation of shelf-life indicators in a germplasm can substantially reduce the cost and time required to phenotype shelf-life performance.}, journal={POSTHARVEST BIOLOGY AND TECHNOLOGY}, author={Oh, Heeduk and Pottorff, Marti and Giongo, Lara and Mainland, Charles M. and Iorizzo, Massimo and Perkins-Veazie, Penelope}, year={2024}, month={Feb} } @article{edger_iorizzo_bassil_benevenuto_ferrao_giongo_hummer_lawas_leisner_li_et al._2022, title={There and back again; historical perspective and future directions for Vaccinium breeding and research studies}, volume={9}, ISSN={["2052-7276"]}, DOI={10.1093/hr/uhac083}, abstractNote={Abstract The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops’ relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.}, journal={HORTICULTURE RESEARCH}, author={Edger, Patrick P. and Iorizzo, Massimo and Bassil, Nahla V and Benevenuto, Juliana and Ferrao, Luis Felipe V and Giongo, Lara and Hummer, Kim and Lawas, Lovely Mae F. and Leisner, Courtney P. and Li, Changying and et al.}, year={2022}, month={Jan} } @article{giongo_ajelli_pottorff_perkins-veazie_iorizzo_2022, title={Comparative multi-parameters approach to dissect texture subcomponents of highbush blueberry cultivars at harvest and postharvest}, volume={183}, ISSN={["1873-2356"]}, DOI={10.1016/j.postharvbio.2021.111696}, abstractNote={Fruit texture and firmness are important cues of blueberry quality for the fresh market. These attributes contribute to consumer acceptance, resistance to bruising during harvesting and transportation, and shelf-life. Thus, fruit firmness and texture are major priorities for blueberry breeders, producers and distributors. In this study, the discriminative power of texture analysis was examined using penetration tests with different probes and double compression for texture profile analysis (TPA). Mechanical parameters taken from the force deformation curves used to dissect texture subcomponents in blueberries that are associated with specific tissue layers. Principal component analysis (PCA) allows to filter and identify mechanical parameters that significantly discern the most variation amongst 24 blueberry genotypes and showed that texture in this crop is multi-trait and cultivar-dependent. Texture analysis was used also on blueberries stored over six weeks to identify mechanical parameters that could be used as predictors for long shelf life. Additionally, the mechanical parameters were correlated with dynamometer data to determine the utility and accuracy of a simple handheld device to measure fruit firmness in blueberries. This study provides a framework for the identification and characterization of the subcomponents of texture in highbush blueberry.}, journal={POSTHARVEST BIOLOGY AND TECHNOLOGY}, author={Giongo, Lara and Ajelli, Matteo and Pottorff, Marti and Perkins-Veazie, Penelope and Iorizzo, Massimo}, year={2022}, month={Jan} } @article{hayes_corbin_nunn_pottorff_kay_lila_iorrizo_ferruzzi_2021, title={Influence of simulated food and oral processing on carotenoid and chlorophyll in vitro bioaccessibility among six spinach genotypes}, volume={5}, ISSN={["2042-650X"]}, url={https://doi.org/10.1039/D1FO00600B}, DOI={10.1039/d1fo00600b}, abstractNote={Spinach processing and simulated mastication impact the bioaccessibility of carotenoids and chlorophylls with a spinach matrix.}, journal={FOOD & FUNCTION}, publisher={Royal Society of Chemistry (RSC)}, author={Hayes, Micaela and Corbin, Sydney and Nunn, Candace and Pottorff, Marti and Kay, Colin D. and Lila, Mary Ann and Iorrizo, Massimo and Ferruzzi, Mario G.}, year={2021}, month={May} } @misc{iorizzo_curaba_pottorff_ferruzzi_simon_cavagnaro_2020, title={Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry}, volume={11}, ISSN={["2073-4425"]}, DOI={10.3390/genes11080906}, abstractNote={Purple or black carrots (Daucus carota ssp. sativus var. atrorubens Alef) are characterized by their dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations. In recent years, there has been increasing interest in the use of black carrot anthocyanins as natural food dyes. Black carrot roots contain large quantities of mono-acylated anthocyanins, which impart a measure of heat-, light- and pH-stability, enhancing the color-stability of food products over their shelf-life. The genetic pathway controlling anthocyanin biosynthesis appears well conserved among land plants; however, different variants of anthocyanin-related genes between cultivars results in tissue-specific accumulations of purple pigments. Thus, broad genetic variations of anthocyanin profile, and tissue-specific distributions in carrot tissues and organs, can be observed, and the ratio of acylated to non-acylated anthocyanins varies significantly in the purple carrot germplasm. Additionally, anthocyanins synthesis can also be influenced by a wide range of external factors, such as abiotic stressors and/or chemical elicitors, directly affecting the anthocyanin yield and stability potential in food and beverage applications. In this study, we critically review and discuss the current knowledge on anthocyanin diversity, genetics and the molecular mechanisms controlling anthocyanin accumulation in carrots. We also provide a view of the current knowledge gaps and advancement needs as regards developing and applying innovative molecular tools to improve the yield, product performance and stability of carrot anthocyanin for use as a natural food colorant.}, number={8}, journal={GENES}, author={Iorizzo, Massimo and Curaba, Julien and Pottorff, Marti and Ferruzzi, Mario G. and Simon, Philipp and Cavagnaro, Pablo F.}, year={2020}, month={Aug} } @article{mengist_burtch_debelo_pottorff_bostan_nunn_corbin_kay_bassil_hummer_et al._2020, title={Development of a genetic framework to improve the efficiency of bioactive delivery from blueberry}, volume={10}, ISSN={["2045-2322"]}, url={https://europepmc.org/articles/PMC7560831}, DOI={10.1038/s41598-020-74280-w}, abstractNote={AbstractIn the present study, we applied a novel high-throughput in vitro gastrointestinal digestion model to phenotype bioaccessibility of phenolics in a diverse germplasm collection representing cultivated highbush blueberries. Results revealed significant (P < 0.05) differences between accessions, years, and accession by year interaction for relative and absolute bioaccessibility of flavonoids and phenolic acids. Broad sense heritability estimates revealed low to moderate inheritances of relative and absolute bioaccessibility, suggesting that besides environmental variables, genetics factors could control bioaccessibility of phenolics. Acylated anthocyanins had significantly higher relative bioaccessibility than non-acylated anthocyanins. Correlation analysis indicated that relative bioaccessibility did not show significant association with fruit quality or raw concentration of metabolites. The study also identified accessions that have high relative and absolute bioaccessibility values. Overall, combining the bioaccessibility of phenolics with genetic and genomic approaches will enable the identification of genotypes and genetic factors influencing these traits in blueberry.}, number={1}, journal={SCIENTIFIC REPORTS}, author={Mengist, Molla F. and Burtch, Haley and Debelo, Hawi and Pottorff, Marti and Bostan, Hamed and Nunn, Candace and Corbin, Sydney and Kay, Colin D. and Bassil, Nahla and Hummer, Kim and et al.}, year={2020}, month={Oct} } @article{hayes_pottorff_kay_van deynze_osorio-marin_lila_iorrizo_ferruzzi_2020, title={In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars}, volume={68}, ISSN={["1520-5118"]}, DOI={10.1021/acs.jafc.0c00158}, abstractNote={Spinach, a nutrient-dense, green-leafy vegetable, is a rich source of carotenoid and chlorophyll bioactives. While the content of bioactives is known to vary with the genotype, variation in bioaccessibility is unknown. Bioaccessibility was explored in 71 greenhouse-grown spinach genotypes in fall and spring 2018/2019. Spinach was phenotyped for its greenness, leaf texture, leaf shape, and SPAD chlorophyll content. Postharvest, spinach was washed, blanched, and homogenized prior to assessment of bioactive bioaccessibility using a novel high-throughput in vitro digestion model followed by high-performance liquid chromatography with a photodiode array detector analysis. There was a significant variation in the bioaccessible content for all bioactives (p < 0.05), except for chlorophyll b (p = 0.063) in spring-grown spinach. The correlation coefficients of bioaccessible contents between seasons reveal that lutein (r = 0.52) and β-carotene (r = 0.55) were correlated to a greater extent than chlorophyll a (r = 0.38) and chlorophyll b (r = 0.19). The results suggest that carotenoid and chlorophyll bioaccessible contents may vary based on spinach genotypes and may be stable across seasons.}, number={11}, journal={JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY}, author={Hayes, Micaela and Pottorff, Marti and Kay, Colin and Van Deynze, Allen and Osorio-Marin, Juliana and Lila, Mary Ann and Iorrizo, Massimo and Ferruzzi, Mario G.}, year={2020}, month={Mar}, pages={3495–3505} } @article{iorizzo_ellison_pottorff_cavagnaro_2019, title={Carrot Molecular Genetics and Mapping}, ISBN={["978-3-030-03388-0"]}, ISSN={["2199-479X"]}, DOI={10.1007/978-3-030-03389-7_7}, abstractNote={Carrot (Daucus carota L.) is an important root vegetable crop that is consumed worldwide and is appreciated for its taste and nutritional content (e.g., provitamin A carotenoids, anthocyanins, vitamins, and other minerals). Carrot genetic research has improved vastly over the past few decades due to advancements in molecular genomic resources developed for carrot. The increasing availability of DNA sequences such as expressed sequence tags (ESTs), creation of a physical map, sequencing of the carrot genome, and the numerous advancements in DNA genotyping has enabled the study of phenotypic variation of crop traits through the development of genetic linkage maps, which enable the ability to identify QTLs and their underlying genetic basis. In addition, the creation of genetic and genomic tools for carrot has enabled the study of diversity within carrot populations and germplasm collections, enabled genome-wide association studies (GWASs), characterization of populations at the species level, and comparative genomics with other crops and model species. Combined, these tools will advance the breeding process for carrot by enabling a targeted approach to improving traits by utilizing marker-assisted selection (MAS) strategies.}, journal={CARROT GENOME}, author={Iorizzo, Massimo and Ellison, Shelby and Pottorff, Marti and Cavagnaro, Pablo F.}, year={2019}, pages={101–117} }