@article{phillips_chen_islam_ryu_zikry_2023, title={Predicting and Controlling Ribbing Instabilities of Carbon Nanotube-PDMS Thin-Film Systems for Multifunctional Applications}, volume={7}, ISSN={["1527-2648"]}, url={https://doi.org/10.1002/adem.202300582}, DOI={10.1002/adem.202300582}, abstractNote={The manufacturing of thin films with structured surfaces by large‐scale rolling has distinct advantages over other techniques, such as lithography, due to scalability. However, it is not well understood or quantified how processing conditions can affect the microstructure at different physical scales. Hence, the objective of this investigation is to develop a validated computational model of the symmetric forward‐roll coating process to understand, predict, and control the morphology of carbon nanotube (CNT)–polydimethylsiloxane (PDMS) pastes. The effects of the thin‐film rheological properties and the roller gap on the ribbing behavior are investigated and a ribbing instability prediction model is formulated from experimental measurements and computational predictions. The CNT–PDMS thin‐film system is modeled by a nonlinear implicit dynamic finite‐element method that accounts for ribbing instabilities, large displacements, rolling contact, and material viscoelasticity. Dynamic mechanical analysis is used to obtain the viscoelastic properties of the CNT–PDMS paste for various CNT weight distributions. Furthermore, a Morris sensitivity analysis is conducted to obtain insights on the dominant predicted characteristics pertaining to the ribbing microstructure. Based on the sensitivity analysis, a critical ribbing aspect ratio is identified for the CNT–PDMS system corresponding to a critical roller gap.}, journal={ADVANCED ENGINEERING MATERIALS}, publisher={Wiley}, author={Phillips, Matthew and Chen, Muh-Jang and Islam, Md Didarul and Ryu, Jong and Zikry, Mohammed}, year={2023}, month={Jul} } @article{islam_perera_black_phillips_chen_hodges_jackman_liu_kim_zikry_et al._2022, title={Template‐Free Scalable Fabrication of Linearly Periodic Microstructures by Controlling Ribbing Defects Phenomenon in Forward Roll Coating for Multifunctional Applications}, volume={9}, ISSN={2196-7350 2196-7350}, url={http://dx.doi.org/10.1002/admi.202201237}, DOI={10.1002/admi.202201237}, abstractNote={Periodic micro/nanoscale structures from nature have inspired the scientific community to adopt surface design for various applications, including superhydrophobic drag reduction. One primary concern of practical applications of such periodic microstructures remains the scalability of conventional microfabrication technologies. This study demonstrates a simple template‐free scalable manufacturing technique to fabricate periodic microstructures by controlling the ribbing defects in the forward roll coating. Viscoelastic composite coating materials are designed for roll‐coating using carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), which helps achieve a controllable ribbing with a periodicity of 114–700 µm. Depending on the process parameters, the patterned microstructures transition from the linear alignment to a random structure. The periodic microstructure enables hydrophobicity as the water contact angles of the samples ranged from 128° to 158°. When towed in a static water pool, a model boat coated with the microstructure film shows 7%–8% faster speed than the boat with a flat PDMS film. The CNT addition shows both mechanical and electrical properties improvement. In a mechanical scratch test, the cohesive failure of the CNT‐PDMS film occurs in ≈90% higher force than bare PDMS. Moreover, the nonconductive bare PDMS shows sheet resistance of 747.84–22.66 Ω □−1 with 0.5 to 2.5 wt% CNT inclusion.}, number={27}, journal={Advanced Materials Interfaces}, publisher={Wiley}, author={Islam, Md Didarul and Perera, Himendra and Black, Benjamin and Phillips, Matthew and Chen, Muh‐Jang and Hodges, Greyson and Jackman, Allyce and Liu, Yuxuan and Kim, Chang‐Jin and Zikry, Mohammed and et al.}, year={2022}, month={Aug}, pages={2201237} }