Md Rayhanur Rahman Elder, S., Rahman, M. R., Fringer, G., Kapoor, K., & Williams, L. (2024). A Survey on Software Vulnerability Exploitability Assessment. ACM COMPUTING SURVEYS, 56(8). https://doi.org/10.1145/3648610 Rahman, M. R., Hezaveh, R. M., & Williams, L. (2023). What Are the Attackers Doing Now? Automating Cyberthreat Intelligence Extraction from Text on Pace with the Changing Threat Landscape: A Survey. ACM COMPUTING SURVEYS, 55(12). https://doi.org/10.1145/3571726 Rahman, M. R., Imtiaz, N., Storey, M.-A., & Williams, L. (2022). Why secret detection tools are not enough: It's not just about false positives-An industrial case study. EMPIRICAL SOFTWARE ENGINEERING, 27(3). https://doi.org/10.1007/s10664-021-10109-y Rahman, A., Rahman, M. R., Parnin, C., & Williams, L. (2021). Security Smells in Ansible and Chef Scripts: A Replication Study. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 30(1). https://doi.org/10.1145/3408897 Rahman, M. R., Mahdavi-Hezaveh, R., & Williams, L. (2020). A Literature Review on Mining Cyberthreat Intelligence from Unstructured Texts. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), pp. 516–525. https://doi.org/10.1109/ICDMW51313.2020.00075 Rahman, M. R., Rahman, A., & Williams, L. (2019). Share, But Be Aware: Security Smells in Python Gists. 2019 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2019), pp. 536–540. https://doi.org/10.1109/ICSME.2019.00087