Michael Hyman Skinner, J., Delgado, A. G., Hyman, M., & Chu, M.-Y. J. (2024). [Review of Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation]. SCIENCE OF THE TOTAL ENVIRONMENT, 925. https://doi.org/10.1016/j.scitotenv.2024.171667 Chen, W., & Hyman, M. (2023). Aerobic cometabolic biodegradation of 1,4-dioxane and its associated Co-contaminants. Current Opinion in Environmental Science & Health. https://doi.org/10.1016/j.coesh.2023.100442 Bealessio, A. D. D., Chen, W., Krippaehne, K. J. J., Murnane, R. A. A., Hyman, M. R. R., & Semprini, L. (2023, August 2). Alcohol-Dependent Cometabolic Degradation of Chlorinated Aliphatic Hydrocarbons and 1,4-Dioxane by Rhodococcus rhodochrous strain ATCC 21198. ENVIRONMENTAL ENGINEERING SCIENCE, Vol. 8. https://doi.org/10.1089/ees.2023.0058 Archaeal communities discovered in the phytotelmata of Nepenthes alata Blco. samples obtained from Mt. Makiling, Philippines as revealed by high-throughput molecular sequencing analysis. (2023). International Journal of Agricultural Technology. Mejia, A. P. O., & Hyman, M. R. (2023). Diyne inactivators and activity-based fluorescent labeling of phenol hydroxylase in Pseudomonas sp. CF600. FEMS MICROBIOLOGY LETTERS, 370. https://doi.org/10.1093/femsle/fnad002 Bingham, J., Hyman, M., Montoya, S., Goshe, M., & Gracieux-Singleton, C. (2023). Identifying the enzyme responsible for initiating aerobic acetylene metabolism in Rhodococcus rhodochrous ATCC 33258. JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 299, pp. S369–S369. https://doi.org/10.1016/j.jbc.2023.103703 McElroy, A. C., Ogles, M. E., Hyman, M. R., & Knappe, D. R. U. (2023). Pilot-scale biofiltration of 1,4-dioxane at drinking water-relevant concentrations. WATER RESEARCH, 231. https://doi.org/10.1016/j.watres.2023.119652 Rolston, H., Hyman, M., & Semprini, L. (2022, May 12). Single-well push-pull tests evaluating isobutane as a primary substrate for promoting in situ cometabolic biotransformation reactions. BIODEGRADATION, Vol. 5. https://doi.org/10.1007/s10532-022-09987-w Chen, W., Faulkner, N., Smith, C., Fruchte, M., & Hyman, M. (2021). Draft Genome Sequences of Four Aerobic Isobutane-Metabolizing Bacteria. MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 10(18). https://doi.org/10.1128/MRA.01381-20 Murnane, R. A., Chen, W., Hyman, M., & Semprini, L. (2021). Long-term cometabolic transformation of 1,1,1-trichloroethane and 1,4-dioxane by Rhodococcus rhodochrous ATCC 21198 grown on alcohols slowly produced by orthosilicates. JOURNAL OF CONTAMINANT HYDROLOGY, 240. https://doi.org/10.1016/j.jconhyd.2021.103796 Rasmussen, M. T., Saito, A. M., Hyman, M. R., & Semprini, L. (2020). Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane. Environmental Science: Processes & Impacts. https://doi.org/10.1039/C9EM00607A McElroy, A. C., Hyman, M. R., & Knappe, D. R. U. (2019). 1,4-Dioxane in drinking water: Emerging for forty years and still unregulated. Current Opinion in Environmental Science & Health, 7, 117–125. https://doi.org/10.1016/j.coesh.2019.01.003 Rolston, H. M., Hyman, M. R., & Semprini, L. (2019). Aerobic cometabolism of 1,4-dioxane by isobutane-utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms: Experimental and modeling study. SCIENCE OF THE TOTAL ENVIRONMENT, 694. https://doi.org/10.1016/j.scitotenv.2019.133688 Ortiz-Medina, J. F., Grunden, A. M., Hyman, M. R., & Call, D. F. (2019). Nitrogen Gas Fixation and Conversion to Ammonium Using Microbial Electrolysis Cells. ACS Sustainable Chemistry & Engineering, 7(3), 3511–3519. https://doi.org/10.1021/acssuschemeng.8b05763 Biodegradation of Ether Pollutants. (2018). In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. https://doi.org/10.1007/978-3-319-44535-9 Chu, M.-Y. J., Bennett, P. J., Dolan, M. E., Hyman, M. R., Peacock, A. D., Bodour, A., … Goltz, M. N. (2018). Concurrent Treatment of 1,4-Dioxane and Chlorinated Aliphatics in a Groundwater Recirculation System Via Aerobic Cometabolism. Groundwater Monitoring & Remediation, 38(3), 53–64. https://doi.org/10.1111/gwmr.12293 Bennett, P., Hyman, M., Smith, C., El Mugammar, H., Chu, M.-Y., Nickelsen, M., & Aravena, R. (2018). Enrichment with Carbon-13 and Deuterium during Monooxygenase-Mediated Biodegradation of 1,4-Dioxane. Environmental Science & Technology Letters, 5(3), 148–153. https://doi.org/10.1021/acs.estlett.7b00565 Bennett, K., Sadler, N. C., Wright, A. T., Yeager, C., & Hyman, M. R. (2016). Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea. Appl. Environ. Microbiol., 82(8), 2270–2279. https://doi.org/10.1128/aem.03556-15 Aerobic Degradation of Gasoline Ether Oxygenates. (2016). In Aerobic Utilization of Hydrocarbons, Oils and Lipids. https://doi.org/10.1007/978-3-319-39782-5_16-1 Kottegoda, S., Waligora, E., & Hyman, M. (2015). Isolation and characterization of a 2-methylpropene (isobutylene)-metabolizing bacterium, Mycobacterium sp. ELW1. Applied and Environmental Microbiology, 81, 1966–1976. Kottegoda, S., Waligora, E., & Hyman, M. (2015). Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp Strain ELW1. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 81(6), 1966–1976. https://doi.org/10.1128/aem.03103-14 Trippe, K. M., Wolpert, T. J., Hyman, M. R., & Ciuffetti, L. M. (2014). RNAi silencing of a cytochrome P450 monoxygenase disrupts the ability of a filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation, 25(1), 137–151. https://doi.org/10.1007/s10532-013-9646-1 Hyman, M. (2013). Biodegradation of gasoline ether oxygenates. Current Opinion in Biotechnology, 24(3), 443–450. https://doi.org/10.1016/j.copbio.2012.10.005 Lan, R. S., Smith, C. A., & Hyman, M. R. (2013). Oxidation of Cyclic Ethers by Alkane-Grown Mycobacterium vaccae JOB5. Remediation Journal, 23(4), 23–42. https://doi.org/10.1002/rem.21364 Hamilton, P. T., Luginbuhl, S. C., & Hyman, M. (2012). Preparing Science-Trained Professionals for the Biotechnology Industry: A Ten-Year Perspective on a Professional Science Master’s Program. Journal of Microbiology & Biology Education : JMBE, 13(1), 39–44. https://doi.org/10.1128/jmbe.v13i1.375 Aslett, D., Haas, J., & Hyman, M. (2011). Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing. Biodegradation, 22(5), 961–972. https://doi.org/10.1007/s10532-011-9455-3 House, A. J., & Hyman, M. R. (2010). Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation, 21(4), 525–541. https://doi.org/10.1007/s10532-009-9321-8 Smith, C. A., & Hyman, M. R. (2010). Oxidation of gasoline oxygenates by closely related non-haem-iron alkane hydroxylases in Pseudomonas mendocina KR1 and other n-octane-utilizing Pseudomonas strains. Environmental Microbiology Reports, 2(3), 426–432. https://doi.org/10.1111/j.1758-2229.2010.00155.x Helping Educational Reforms To Succeed in a Microbiology Department. (2009). Microbe Magazine. https://doi.org/10.1128/microbe.4.219.1 Lee, V. S., & M, H. (2009). Helping educational reforms to succeed in a Microbiology Department. Microbe, 4, 219–223. McKelvie, J. R., Hyman, M. R., Elsner, M., Smith, C., Aslett, D. M., Lacrampe-Couloume, G., & Sherwood Lollar, B. (2009). Isotopic Fractionation of Methyl tert-Butyl Ether Suggests Different Initial Reaction Mechanisms during Aerobic Biodegradation. Environmental Science & Technology, 43(8), 2793–2799. https://doi.org/10.1021/es803307y Skinner, K., Cuiffetti, L., & Hyman, M. (2009). Metabolism and Cometabolism of Cyclic Ethers by a Filamentous Fungus, a Graphium sp. Appl. Environ. Microbiol., 75(17), 5514–5522. https://doi.org/10.1128/AEM.00078-09 Skinner, K. M., Martinez-Prado, A., Hyman, M. R., Williamson, K. J., & Ciuffetti, L. M. (2008). Pathway, inhibition and regulation of methyl tertiary butyl ether oxidation in a filamentous fungus, Graphium sp. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 77(6), 1359–1365. https://doi.org/10.1007/s00253-007-1268-2 Lee, V. S., Hyman, M. R., & Luginbuhl, G. (2007). The Concept of Readiness in the Academic Department: A Case Study of Undergraduate Education Reform. Innovative Higher Education, 32(1), 3–18. https://doi.org/10.1007/s10755-006-9032-6 Johnson, E. L., & Hyman, M. R. (2006). Propane and n-butane oxidation by Pseudomonas putida GPo1. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 72(1), 950–952. https://doi.org/10.1128/aem.72.1.950-952.2006 Johnson, E. L., Smith, C. A., KT O'Reilly, & Hyman, M. R. (2004). Induction of methyl Tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 70(2), 1023–1030. https://doi.org/10.1128/AEM.70.2.1023-1030.2004 Johnson, E. L., Smith, C. A., O'Reilly, K. T., & Hyman, M. R. (2004). Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Applied and Environmental Microbiology, 70(2), 1023–1030. Smith, C. A., & Hyman, M. R. (2004). Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Applied and Environmental Microbiology, 70(8), 4544–4550. https://doi.org/10.1128/AEM.70.8.4544-4550.2004 Lee, V. S., Greene, D. B., Wellman, D. J., & al. (2004). Teaching and learning through inquiry: A guidebook for institutions and instructors. Sterling, Va.: Stylus Pub. Pon, G., Hyman, M. R., & Semprini, L. (2003). Acetylene inhibition of trichloroethene and vinyl chloride reductive dechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 37(14), 3181–3188. https://doi.org/10.1021/es026352i Smith, C. A., KT O'Reilly, & Hyman, M. R. (2003). Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 69(2), 796–804. https://doi.org/10.1128/AEM.69.2.796-804.2003 Smith, C. A., O'Reilly, K. T., & Hyman, M. R. (2003). Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Applied and Environmental Microbiology, 69(2), 796–804. Smith, C. A., KT O'Reilly, & Hyman, M. R. (2003). Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C(5) to C(8) n-alkanes. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 69(12), 7385–7394. https://doi.org/10.1128/AEM.69.12.7385-7394.2003 Smith, C. A., O'Reilly, K. T., & Hyman, M. R. (2003). Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8 n-alkanes. Applied and Environmental Microbiology, 69(12), 7385–7394. Chang, S. W., Hyman, M. R., & Williamson, K. J. (2002). Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium, Nitrosomonas europaea. Biodegradation (Dordrecht), 13(6), 373–381. Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium, Nitrosomonas europaea. (2002). Biodegradation. https://doi.org/10.1023/a:1022811430030 O'Reilly, K. T., Moir, M. E., Taylor, C. D., Smith, C. A., & Hyman, M. R. (2001). Hydrolysis of tert-Butyl Methyl Ether (MTBE) in Dilute Aqueous Acid. Environmental Science & Technology, 35(19), 3954–3961. https://doi.org/10.1021/es001431k Arp, D. J., Yeager, C. M., & Hyman, M. R. (2001). Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation (Dordrecht), 12(2), 81–103. Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. (2001). Biodegradation. https://doi.org/10.1023/a:1012089908518 Vancheeswaran, S., Hyman, M. R., & Semprini, L. (1999). Anaerobic Biotransformation of Trichlorofluoroethene in Groundwater Microcosms. Environmental Science & Technology, 33(12), 2040–2045. https://doi.org/10.1021/es9811952 Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response . (1999). Biotechnology and Bioengineering. https://doi.org/10.1002/(sici)1097-0290(19990620)63:6<756::aid-bit14>3.0.co;2-z Yeager, C. M., Bottomley, P. J., Arp, D. J., & Hyman, M. R. (1999). Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. Applied and Environmental Microbiology, 65(2), 632–639. Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes. (1999). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/9925593/?tool=EBI Schroth, M. H., Istok, J. D., Conner, G. T., Hyman, M. R., Haggerty, R., & O'Reilly, K. T. (1998). Spatial Variability in In Situ Aerobic Respiration and Denitrification Rates in a Petroleum-Contaminated Aquifer. Groundwater, 36(6), 924–937. https://doi.org/10.1111/j.1745-6584.1998.tb02099.x Ely, R. L., Williamson, K. J., Hyman, M. R., & Arp, D. J. (1997). Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnology and Bioengineering, 54(6), 520–534. https://doi.org/10.1002/(SICI)1097-0290(19970620)54:6<520::AID-BIT3>3.0.CO;2-L Hardison, L. K., Curry, S. S., Ciuffetti, L. M., & Hyman, M. R. (1997). Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp. Applied and Environmental Microbiology, 63(8), 3059–3067. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1389222/ Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp. (1997). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16535667/?tool=EBI Regulation of the Synthesis and Activity of Ammonia Monooxygenase in Nitrosomonas europaea by Altering pH To Affect NH(inf3) Availability. (1997). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16535741/?tool=EBI Stein, L. Y., Arp, D. J., & Hyman, M. R. (1997). Regulation of the synthesis and activity of ammonia monooxygenase in Nitrosomonas europaea by altering pH to affect NH3 availability. Applied and Environmental Microbiology, 63, 4588–4592. Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & O'Reilly, K. T. (1997). Single-Well, “Push-Pull” Test for In Situ Determination of Microbial Activities. Groundwater, 35(4), 619–631. https://doi.org/10.1111/j.1745-6584.1997.tb00127.x Curry, S., Ciuffetti, L., & Hyman, M. (1996). Inhibition of Growth of a Graphium sp. on Gaseous n-Alkanes by Gaseous n-Alkynes and n-Alkenes. Applied and Environmental Microbiology, 62(6), 2198–2200. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388884/ Inhibition of Growth of a Graphium sp. on Gaseous n-Alkanes by Gaseous n-Alkynes and n-Alkenes. (1996). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16535346/?tool=EBI Ely, R. L., Williamson, K. J., Guenther, R. B., Hyman, M. R., & Arp, D. J. (1995). A cometabilic kinetics model incorporating enzyme inhbition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnology and Bioengineering, 46(3), 218–231. https://doi.org/10.1002/bit.260460305 Ely, R. L., Hyman, M. R., Arp, D. J., Guenther, R. B., & Williamson, K. J. (1995). A cometabolic kinetics model incoroporating enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradaation experiments. Biotechnology and Bioengineering, 46(3), 232–245. https://doi.org/10.1002/bit.260460306 Hyman, M. R., & Arp, D. J. (1995). Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source. Journal of Bacteriology, 177(17), 4974–4979. Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source. (1995). Journal of Bacteriology. https://doi.org/10.1128/jb.177.17.4974-4979.1995 Hyman, M. R., Russell, S. A., Ely, R. L., Williamson, K. J., & Arp, D. J. (1995). Inhibition, Inactivation, and Recovery of Ammonia-Oxidizing Activity in Cometabolism of Trichloroethylene by Nitrosomonas europaea. Applied and Environmental Microbiology, 61(4), 1480–1487. Inhibition, Inactivation, and Recovery of Ammonia-Oxidizing Activity in Cometabolism of Trichloroethylene by Nitrosomonas europaea. (1995). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16534997/?tool=EBI Juliette, L. Y., Hyman, M. R., & Arp, D. J. (1995). Roles of bovine serum albumin and copper in the assay and stability of ammonia monooxygenase activity in vitro. Journal of Bacteriology, 177(17), 4908–4913. Roles of bovine serum albumin and copper in the assay and stability of ammonia monooxygenase activity in vitro. (1995). Journal of Bacteriology. https://doi.org/10.1128/jb.177.17.4908-4913.1995 Hyman, M. R., Page, C. L., & Arp, D. J. (1994). Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Applied and Environmental Microbiology, 60(8), 3033–3035. Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. (1994). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/8085841/?tool=EBI Hyman, M. R., & Arp, D. J. (1993). An electrophoretic study of the thermal- and reductant-dependent aggregation of the 27 kDa component of ammonia monooxygenase from Nitrosomonas europaea. Electrophoresis, 14(7), 619–627. An electrophoretic study of the thermal- and reductant-dependent aggregation of the 27 kDa component of ammonia monooxygenase from Nitrosomonas europaea. (1993). Electrophoresis. https://doi.org/10.1002/elps.1150140197 In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. (1993). Journal of Bacteriology. https://doi.org/10.1128/jb.175.7.1971-1980.1993 Ensign, S. A., Hyman, M. R., & Arp, D. J. (1993). In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. Journal of Bacteriology, 175(7), 1971–1980. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC204278/ Juliette, L. Y., Hyman, M. R., & Arp, D. J. (1993). Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase. Applied and Environmental Microbiology, 59(11), 3718–3727. Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase. (1993). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16349086/?tool=EBI Juliette, L. Y., Hyman, M. R., & Arp, D. J. (1993). Mechanism-Based Inactivation of Ammonia Monooxygenase in Nitrosomonas europaea by Allylsulfide. Applied and Environmental Microbiology, 59(11), 3728–3735. Mechanism-Based Inactivation of Ammonia Monooxygenase in Nitrosomonas europaea by Allylsulfide. (1993). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16349087/?tool=EBI Hyman, M. R., & Arp, D. J. (1992). 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. The Journal of Biological Chemistry, 267(3), 1534–1545. 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. (1992). The Journal of Biological Chemistry. Acetylene inhibition of Azotobacter vinelandii hydrogenase: acetylene binds tightly to the large subunit. (1992). Biochemistry. https://doi.org/10.1021/bi00127a016 Jin-Hua, S., Hyman, M. R., & Arp, D. J. (1992). C2H2 Inhibition of Azotobacter vinelandii hydrogenase: C2H2 binds tightly to the large subunit. Biochemistry, 31, 3158–3165. Ensign, S. A., Hyman, M. R., & Arp, D. J. (1992). Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Applied and Environmental Microbiology, 58(9), 3038–3046. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. (1992). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/1444418/?tool=EBI Hyman, M. R., Seefeldt, L. C., Morgan, T. V., Arp, D. J., & Mortenson, L. E. (1992). Kinetic and spectroscopic analysis of the inactivating effects of nitric oxide on the individual components of Azotobacter vinelandii nitrogenase. Biochemistry, 31(11), 2947–2955. Kinetic and spectroscopic analysis of the inactivating effects of nitric oxide on the individual components of Azotobacter vinelandii nitrogenase. (1992). Biochemistry. https://doi.org/10.1021/bi00126a015 Rasche, M. E., Hyman, M. R., & Arp, D. J. (1991). Factors Limiting Aliphatic Chlorocarbon Degradation by Nitrosomonas europaea: Cometabolic Inactivation of Ammonia Monooxygenase and Substrate Specificity. Applied and Environmental Microbiology, 57(10), 2986–2994. Factors Limiting Aliphatic Chlorocarbon Degradation by Nitrosomonas europaea: Cometabolic Inactivation of Ammonia Monooxygenase and Substrate Specificity. (1991). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16348568/?tool=EBI Kinetic analysis of the interaction of nitric oxide with the membrane-associated, nickel and iron-sulfur-containing hydrogenase from Azotobacter vinelandii. (1991). Biochimica Et Biophysica Acta. https://doi.org/10.1016/0167-4838(91)90261-w Hyman, M. R., & Arp, D. J. (1991). Kinetic analysis of the interaction of nitric oxide with the nickel and iron-sulfur-containing membrane-bound hydrogenase from Azotobacter vinelandii. Biochimica Biophysica Acta, 1076, 167–174. Rasche, M. E., Hyman, M. R., & Arp, D. J. (1990). Biodegradation of Halogenated Hydrocarbon Fumigants by Nitrifying Bacteria. Applied and Environmental Microbiology, 56(8), 2568–2571. Biodegradation of Halogenated Hydrocarbon Fumigants by Nitrifying Bacteria. (1990). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16348264/?tool=EBI Hyman, M. R., Kim, C. Y., & Arp, D. J. (1990). Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. Journal of Bacteriology, 172(9), 4775–4782. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. (1990). Journal of Bacteriology. https://doi.org/10.1128/jb.172.9.4775-4782.1990 Rasche, M. E., Hicks, R. E., Hyman, M. R., & Arp, D. J. (1990). Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. Journal of Bacteriology, 172(9), 5368–5373. Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. (1990). Journal of Bacteriology. https://doi.org/10.1128/jb.172.9.5368-5373.1990 Hyman, M. R., & Arp, D. J. (1990). The small-scale production of [U-14C] acetylene from Ba14C-CO3: Application to labelling of ammonia monooxygenase in autotrophic nitrifying bacteria. Analytical Biochemistry, 190, 348–353. The small-scale production of [U-14C]acetylene from Ba14CO3: application to labeling of ammonia monooxygenase in autotrophic nitrifying bacteria. (1990). Analytical Biochemistry. https://doi.org/10.1016/0003-2697(90)90206-o Hyman, M. R., Ensign, S. A., Arp, D. J., & Ludden, P. W. (1989). Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum. Biochemistry, 28(17), 6821–6826. https://doi.org/10.1021/bi00443a007 Ensign, S. A., Hyman, M. R., & Ludden, P. W. (1989). Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry, 28(12), 4973–4979. https://doi.org/10.1021/bi00438a011 Acetylene inhibition of metalloenzymes. (1988). Analytical Biochemistry. https://doi.org/10.1016/0003-2697(88)90181-9 Hyman, M. R., & Arp, D. J. (1988). Acetylene inhibition of metalloenzymes. Analytical Biochemistry, 173(2), 207–220. Hyman, M. R., Seefeldt, L. C., & Arp, D. J. (1988). Aerobic, inactive forms of Azotobacter vinelandii hydrogenase: activation kinetics and insensitivity to C2H2 inhibition. Biochimica Et Biophysica Acta, 957(1), 91–96. Aerobic, inactive forms of Azotobacter vinelandii hydrogenase: activation kinetics and insensitivity to C2H2 inhibition. (1988). Biochimica Et Biophysica Acta. https://doi.org/10.1016/0167-4838(88)90160-4 Hyman, M. R., Murton, I. B., & Arp, D. J. (1988). Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes. Applied and Environmental Microbiology, 54(12), 3187–3190. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC204451/ Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes, and Alkynes. (1988). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16347810/?tool=EBI Hyman, M. R., & Arp, D. J. (1988). Reversible and irreversible effects of nitric oxide on the soluble hydrogenase from Alcaligenes eutrophus H16. Biochemical Journal, 254(2), 469–475. https://doi.org/10.1042/bj2540469 Hyman, M. R., Fox, C. A., & Arp, D. J. (1988). Role of hydrogen in the activation and regulation of hydrogen oxidation by the soluble hydrogenase from Alcaligenes eutrophus H16. Biochemical Journal, 254(2), 463–468. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1135100/ Role of hydrogen in the activation and regulation of hydrogen oxidation by the soluble hydrogenase from Alcaligenes eutrophus H16. (1988). The Biochemical Journal. https://doi.org/10.1042/bj2540463 Hyman, M. R., & Arp, D. J. (1987). Acetylene is an active-site-directed, slow-binding, reversible inhibitor of Azotobacter vinelandii hydrogenase. Biochemistry, 26(20), 6447–6454. https://doi.org/10.1021/bi00394a023 Hyman, M. R., & Arp, D. J. (1987). Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms. Applied and Environmental Microbiology, 53(2), 298–303. Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms. (1987). Applied and Environmental Microbiology. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/16347278/?tool=EBI Hyman, M. R., Sansome-Smith, A. W., Shears, J. H., & Wood, P. M. (1985). A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone. Archives of Microbiology, 143(3), 302–306. https://doi.org/10.1007/BF00411254 Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. (1985). The Biochemical Journal. https://doi.org/10.1042/bj2270719 Hyman, M. R., & Wood, P. M. (1985). Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochemical Journal, 227(3), 719–725. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1144898/ Bromocarbon oxidation by Nitrosomonas europaea. (1984). In Microbial Growth on C1 Compounds. Hyman, M. R., & Wood, P. M. (1984). Ethylene oxidation by Nitrosomonas europaea. Archives of Microbiology, 137(2), 155–158. https://doi.org/10.1007/BF00414458 Hyman, M. R., & Wood, P. M. (1983). Methane oxidation by Nitrosomonas europaea. The Biochemical Journal, 212(1), 31–37. Methane oxidation by Nitrosomonas europaea. (1983). The Biochemical Journal. https://doi.org/10.1042/bj2120031 Ensign, S. A., Hyman, M. R., & Ludden, P. W. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry, 28, 4973–4979.