@article{scheidemantle_duan_lodge_cummings_hilovsky_pham_wang_kennedy_liu_2024, title={Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism}, volume={20}, ISSN={["1573-3890"]}, DOI={10.1007/s11306-024-02113-2}, abstractNote={Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment. The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).}, number={3}, journal={METABOLOMICS}, author={Scheidemantle, Grace and Duan, Likun and Lodge, Mareca and Cummings, Magdalina J. and Hilovsky, Dalton and Pham, Eva and Wang, Xiaoqiu and Kennedy, Arion and Liu, Xiaojing}, year={2024}, month={May} } @article{adams_collins_williams_holmes_hess_atkins_scheidemantle_liu_lodge_johnson_et al._2024, title={Myeloid cell MHC I expression drives CD8+ T cell activation in nonalcoholic steatohepatitis}, volume={14}, ISSN={["1664-3224"]}, url={https://doi.org/10.3389/fimmu.2023.1302006}, DOI={10.3389/fimmu.2023.1302006}, abstractNote={Background & aimsActivated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation.MethodsWe used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry.ResultsIn NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution.ConclusionThese results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.}, journal={FRONTIERS IN IMMUNOLOGY}, author={Adams, Victoria R. and Collins, Leonard B. and Williams, Taufika Islam and Holmes, Jennifer and Hess, Paul and Atkins, Hannah M. and Scheidemantle, Grace and Liu, Xiaojing and Lodge, Mareca and Johnson, Aaron J. and et al.}, editor={Williams, Taufika Islam and Collins, Leonard B. and Kennedy, ArionEditors}, year={2024}, month={Jan} } @misc{lodge_dykes_kennedy_2024, title={Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease}, volume={14}, ISSN={["2218-273X"]}, DOI={10.3390/biom14070845}, abstractNote={Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.}, number={7}, journal={BIOMOLECULES}, author={Lodge, Mareca and Dykes, Rachel and Kennedy, Arion}, year={2024}, month={Jul} } @article{duan_scheidemantle_lodge_cummings_pham_wang_kennedy_liu_2022, title={Prioritize biologically relevant ions for data-independent acquisition (BRI-DIA) in LC-MS/MS-based lipidomics analysis}, volume={18}, ISSN={["1573-3890"]}, DOI={10.1007/s11306-022-01913-8}, abstractNote={Data-dependent acquisition (DDA) is the most commonly used MS/MS scan method for lipidomics analysis on orbitrap-based instrument. However, MS instrument associated software decide the top N precursors for fragmentation, resulting in stochasticity of precursor selection and compromised consistency and reproducibility. We introduce a novel workflow using biologically relevant lipids to construct inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow.To ensure consistent coverage of biologically relevant lipids in LC-MS/MS-based lipidomics analysis.Biologically relevant ion list was constructed based on LIPID MAPS and lipidome atlas in MS-DIAL 4. Lipids were extracted from mouse tissues and used to assess different MS/MS scan workflow (DDA, BRI-DIA, and hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer.DDA resulted in more MS/MS events, but the total number of unique lipids identified by three methods (DDA, BRI-DIA, and hybrid MS/MS scan mode) is comparable (580 unique lipids across 44 lipid subclasses in mouse liver). Major cardiolipin molecular species were identified by data generated using BRI-DIA and hybrid methods and allowed calculation of cardiolipin compositions, while identification of the most abundant cardiolipin CL72:8 was missing in data generated using DDA method, leading to wrong calculation of cardiolipin composition.The method of using inclusion list comprised of biologically relevant lipids in DIA MS/MS scan is as efficient as traditional DDA method in profiling lipids, but offers better consistency of lipid identification, compared to DDA method. This study was performed using Orbitrap Exploris 480, and we will further evaluate this workflow on other platforms, and if verified by future work, this biologically relevant ion fragmentation workflow could be routinely used in many studies to improve MS/MS identification capacities.}, number={8}, journal={METABOLOMICS}, author={Duan, Likun and Scheidemantle, Grace and Lodge, Mareca and Cummings, Magdalina J. and Pham, Eva and Wang, Xiaoqiu and Kennedy, Arion and Liu, Xiaojing}, year={2022}, month={Jul} }