@misc{henry_beaulieu_bradford_graves jr_2023, title={Embedded racism: Inequitable niche construction as a neglected evolutionary process affecting health}, volume={11}, ISSN={["2050-6201"]}, DOI={10.1093/emph/eoad007}, abstractNote={Abstract Racial health disparities are a pervasive feature of modern experience and structural racism is increasingly recognized as a public health crisis. Yet evolutionary medicine has not adequately addressed the racialization of health and disease, particularly the systematic embedding of social biases in biological processes leading to disparate health outcomes delineated by socially defined race. In contrast to the sheer dominance of medical publications which still assume genetic ‘race’ and omit mention of its social construction, we present an alternative biological framework of racialized health. We explore the unifying evolutionary-ecological principle of niche construction as it offers critical insights on internal and external biological and behavioral feedback processes environments at every level of the organization. We Integrate insights of niche construction theory in the context of human evolutionary and social history and phenotype-genotype modification, exposing the extent to which racism is an evolutionary mismatch underlying inequitable disparities in disease. We then apply ecological models of niche exclusion and exploitation to institutional and interpersonal racial constructions of population and individual health and demonstrate how discriminatory processes of health and harm apply to evolutionarily relevant disease classes and life-history processes in which socially defined race is poorly understood and evaluated. Ultimately, we call for evolutionary and biomedical scholars to recognize the salience of racism as a pathogenic process biasing health outcomes studied across disciplines and to redress the neglect of focus on research and application related to this crucial issue.}, number={1}, journal={EVOLUTION MEDICINE AND PUBLIC HEALTH}, author={Henry, Paula Ivey and Beaulieu, Meredith R. Spence and Bradford, Angelle and Graves Jr, Joseph L.}, year={2023}, month={Jan}, pages={112–125} } @article{spence beaulieu_federico_reiskind_2020, title={Mosquito diversity and dog heartworm prevalence in suburban areas}, volume={13}, ISSN={["1756-3305"]}, DOI={10.1186/s13071-019-3874-0}, abstractNote={Abstract Background Urbanization is occurring rapidly on a global scale and is altering mosquito communities, creating assemblages that are characteristically less diverse. Despite high rates of urbanization and ample examples of vector-borne diseases transmitted by multiple species, the effects of urbanization-driven mosquito diversity losses on disease transmission has not been well explored. We investigated this question using the dog heartworm, a filarial parasite vectored by numerous mosquito species. Methods We trapped host-seeking mosquitoes in undeveloped areas and neighborhoods of different ages in Wake County, North Carolina, USA, analyzing captured mosquitoes for heartworm DNA. We compared within-mosquito heartworm infection across land-use types by Kruskal–Wallis and likelihood ratio tests. Using zip code level data acquired from dogs in a local shelter, we performed linear regressions of within-host heartworm prevalence by within-mosquito heartworm prevalence as well as by three mosquito diversity measures. We also determined the best predictor of host-level prevalence among models including within-mosquito infection, mosquito diversity and abundance, and socioeconomic status as variables. Results Suburban areas had lower within-mosquito heartworm prevalence and lower likelihood of heartworm-positive mosquitoes than did undeveloped field sites, although no differences were seen between suburban and undeveloped wooded sites. No relationships were noted between within-mosquito and within-host heartworm prevalence. However, mosquito diversity metrics were positively correlated with host heartworm prevalence. Model selection revealed within-host prevalence was best predicted by a positive relationship with mosquito Shannon–Wiener diversity and a negative relationship with household income. Conclusions Our results demonstrate that decreases in mosquito diversity due to urbanization alter vector-borne disease risk. With regard to dog heartworm disease, this loss of mosquito diversity is associated with decreased heartworm prevalence within both the vector and the host. Although the response is likely different for diseases transmitted by one or few species, mosquito diversity losses leading to decreased transmission could be generalizable to other pathogens with multiple vectors. This study contributes to better understanding of the effects of urbanization and the role of vector diversity in multi-vectored pathosystems. }, number={1}, journal={PARASITES & VECTORS}, author={Spence Beaulieu, Meredith R. and Federico, Jennifer L. and Reiskind, Michael H.}, year={2020}, month={Jan} } @article{spence beaulieu_hopperstad_dunn_reiskind_2019, title={Simplification of vector communities during suburban succession}, volume={14}, ISSN={1932-6203}, url={http://dx.doi.org/10.1371/journal.pone.0215485}, DOI={10.1371/journal.pone.0215485}, abstractNote={Suburbanization is happening rapidly on a global scale, resulting in changes to the species assemblages present in previously undeveloped areas of land. Community-level changes after anthropogenic land-use change have been studied in a variety of organisms, but the effects on arthropods of medical and veterinary importance remain poorly characterized. Shifts in diversity, abundance, and community composition of such arthropods, like mosquitoes, can significantly impact vector-borne disease dynamics due to varying vectorial capacity between different species. In light of these potential implications for vector-borne diseases, we investigated changes in mosquito species assemblage after suburbanization by sampling mosquitoes in neighborhoods of different ages in Wake County, North Carolina, US. We found that independent of housing density and socioeconomic status, mosquito diversity measures decreased as suburban neighborhoods aged. In the oldest neighborhoods, the mosquito assemblage reached a distinct suburban climax community dominated by the invasive, peridomestic container-breeding Aedes albopictus, the Asian tiger mosquito. Aedes albopictus is a competent vector of many pathogens of human concern, and its dominance in suburban areas places it in close proximity with humans, allowing for heightened potential of host-vector interactions. While further research is necessary to explicitly characterize the effects of mosquito community simplification on vector-borne disease transmission in highly suburbanized areas, the current study demonstrates that suburbanization is disrupting mosquito communities so severely that they do not recover their diversity even 100 years after the initial disturbance. Our understanding of the community-level effects of anthropogenic land-use change on arthropod vectors will become increasingly important as we look to mitigate disease spread in a global landscape that is continually developed and altered by humans.}, number={5}, journal={PLOS ONE}, publisher={Public Library of Science (PLoS)}, author={Spence Beaulieu, Meredith R. and Hopperstad, Kristen and Dunn, Robert R. and Reiskind, Michael H.}, editor={Leisnham, Paul T.Editor}, year={2019}, month={May}, pages={e0215485} } @article{beaulieu_2019, title={The role of parasite manipulation in vector-borne diseases}, ISSN={["2050-6201"]}, DOI={10.1093/emph/eoz019}, abstractNote={The parasite manipulation hypothesis posits that parasites can purposefully alter host behaviours, increasing probability of transmission to an uninfected host [1]. An example is Toxoplasma gondii, where infected rodents become less predator averse, increasing the likelihood of infection reaching the feline host [2]. With other behavioural alterations, determination of whether effects are due to manipulations or are secondary outcomes of infection can be difficult [1]. Regardless, parasiteinduced changes represented in the manipulation hypothesis have implications for disease transmission. The hypothesis applies to vector-borne diseases, where parasite-induced changes in vector behaviour can increase transmission to the non-arthropod host. Here, a commonly affected behaviour is bloodfeeding. Arthropods must blood-feed twice to transmit pathogens, first on an infectious host then again on a susceptible host. This necessity for two blood meals to fulfil the parasite’s life cycle makes bloodfeeding a major component to vectorborne disease transmission [3]. EXAMPLES IN PUBLIC HEALTH}, number={1}, journal={EVOLUTION MEDICINE AND PUBLIC HEALTH}, author={Beaulieu, Meredith R. Spence}, year={2019}, pages={106–107} }