@misc{rukh_rahman_sakib_pantha_hasan_jabeen_islam_2024, title={A comprehensive review of semi-clathrate hydrates for CO2 capture: Characterizations, mechanism and role of promoters}, volume={12}, ISSN={["2772-6568"]}, DOI={10.1016/j.ccst.2024.100217}, abstractNote={Recently, clathrate hydrate-based CO2 separation is considered as one of the most attractive processes for reducing CO2 emissions because of its effective energy utilization, environmental friendliness, and economic viability. The ionic semi-clathrate hydrate, a quaternary salt used to facilitate hydrate formation, is particularly shown interest because it can boost CO2 capture by improving the physical and chemical interactions between host lattice and guest molecules for hydrate formation. A reduced pressure of 1 MPa or less is high enough for effective gas trapping at 280 K using a semi-clathrate hydrate. The operating parameters, ionic hydrate structure, and promoter concentration affect CO2 capture. The efficiency of the CO2 separation process can be significantly reduced by inhibitory effects at a particular salt concentration. Research has been conducted using tetra-n-butyl-ammonium and phosphonium salts because their crystal structure and morphology are favorable to form semi-clathrate hydrates. However, only a few lookups on environment-friendly and appropriate characterization strategies of the hydrates and novel promoters, and their design, and operability have been performed. This review addresses the mechanisms involving the size of CO2 molecules in an ionic hydrate network, the characterization methods of the hydrates, promoter integration and their overall performance analysis. In addition to that, operational strategies of the semi-clathrate hydrate-based CO2 capture processes, the drawbacks and future routes to research CO2 capture using semi-clathrate hydrates have been addressed.}, journal={CARBON CAPTURE SCIENCE & TECHNOLOGY}, author={Rukh, Mahe and Rahman, Md Shahriar and Sakib, K. M. Nazmus and Pantha, Shawon Chowdhury and Hasan, Sadia and Jabeen, Mahe and Islam, Md Shaninoor}, year={2024}, month={Sep} } @misc{khan_akash_akter_rukh_nzediegwu_islam_2023, title={A comprehensive review of coconut-based porous materials for wastewater treatment and CO2 capture}, volume={338}, ISSN={["1095-8630"]}, DOI={10.1016/j.jenvman.2023.117825}, abstractNote={For several decades, water pollution has become a major threat to aquatic and non-aquatic species, including humans. Different treatment techniques have already been proposed and implemented depending on wastewater characteristics. But many of these treatment techniques are expensive and inefficient. Adsorption-based techniques have shown impressive performances as an inexpensive treatment method previously. Coconut-based resources have been considered as adsorbents for wastewater treatment because of their abundance, low cost, and favorable surface properties. However, over the last decade, no comprehensive study has been published regarding biochar from coconut-based materials for wastewater treatment and CO2 capture. This review discusses biochar production technology for coconut-based materials, its modification and characterization, its utilization as an adsorbent for removing metals and organics from wastewater, and the associated removal mechanisms and the economic aspects of coconut-based biochar. Coconut-based materials are cheap and effective for removing various organic compounds such as pesticides, hormones, phenol, and phenolic compounds from solutions and capturing CO2 from air mainly through the pore-filling mechanism. Utilizing coconut-based biochars in a hybrid system that combines adsorption and other techniques, such as biotechnology or chemical coagulation is a promising way to increase their performance as an adsorbent in wastewater treatment.}, journal={JOURNAL OF ENVIRONMENTAL MANAGEMENT}, author={Khan, Mahmudul Hasan and Akash, Nasim Mahmud and Akter, Sonia and Rukh, Mahe and Nzediegwu, Christopher and Islam, Md Shahinoor}, year={2023}, month={Jul} } @article{brody_rukh_cai_bosari_schomaecker_li_2023, title={Sorption-enhanced steam reforming of toluene using multifunctional perovskite phase transition sorbents in a chemical looping scheme}, volume={5}, ISSN={["2515-7655"]}, url={https://doi.org/10.1088/2515-7655/acdbe9}, DOI={10.1088/2515-7655/acdbe9}, abstractNote={Abstract}, number={3}, journal={JOURNAL OF PHYSICS-ENERGY}, author={Brody, Leo and Rukh, Mahe and Cai, Runxia and Bosari, Azin Saberi and Schomaecker, Reinhard and Li, Fanxing}, year={2023}, month={Jul} }