@article{simpson_haverroth_taggart_andrade_villegas_carbajal_oliveira_suchoff_milla-lewis_cardoso_2024, title={Dehydration tolerance rather than avoidance explains drought resistance in zoysiagrass}, volume={176}, ISSN={["1399-3054"]}, url={http://dx.doi.org/10.1111/ppl.14622}, DOI={10.1111/ppl.14622}, abstractNote={Abstract Irrigation of grasses dominates domestic water use across the globe, and better understanding of water use and drought resistance in grasses is of undeniable importance for water conservation. Breeding programs have released cultivars with improved drought resistance, but the underlying mechanisms remain unknown. We sought to characterize the mechanisms driving drought resistance in four zoysiagrass cultivars (Lobo, Zeon, Empire, and Meyer) reported to exhibit contrasting levels of drought resistance. A dry‐down was performed through deficit irrigation until 70% decline in evapotranspiration. All cultivars exhibited similar drought avoidance as they dehydrated similarly throughout the drought. Lobo and Zeon, however, exhibited a 70% decline in evapotranspiration two to three days after Empire and Meyer, thus experiencing lower water potentials. Regarding drought tolerance, Lobo and Zeon maintained higher normalized difference vegetation index (NDVI) and lower perceived canopy mortality at higher dehydration levels than Empire and Meyer. We use “perceived” because visual assessments of canopy mortality are influenced by drought‐induced leaf rolling. During the recovery, leaves rehydrated and unrolled, so the “actual” canopy mortality could be evaluated. All cultivars exhibited similar mortality on the first recovery day despite Lobo and Zeon experiencing more severe dehydration. Throughout the recovery, Lobo and Empire exhibited faster re‐growth and showed the lowest canopy mortality, and Lobo exhibited the highest NDVI. The improved drought resistance of Lobo and Zeon results from greater dehydration tolerance rather than avoidance. This study has implications for lawn owners selecting the best cultivars and for breeding programs aiming at improving drought resistance of zoysiagrasses.}, number={6}, journal={PHYSIOLOGIA PLANTARUM}, author={Simpson, Emma and Haverroth, Eduardo J. and Taggart, Matthew and Andrade, Moab T. and Villegas, Daniel A. and Carbajal, Esdras M. and Oliveira, Leonardo A. and Suchoff, David and Milla-Lewis, Susana and Cardoso, Amanda A.}, year={2024}, month={Nov} } @article{andrade_cardoso_oliveira_pereira_haverroth_souza_damatta_zsogon_martins_2024, title={Enhanced drought resistance in tomato via reduced auxin sensitivity: delayed dehydration and improved leaf resistance to embolism}, volume={176}, ISSN={["1399-3054"]}, url={http://dx.doi.org/10.1111/ppl.14408}, DOI={10.1111/ppl.14408}, abstractNote={Abstract Auxins are master regulators of plant development and auxin perception mutants display smaller leaves, lower transpiration, and narrower xylem vessels than their corresponding wild types. Here, we evaluated whether the leaf embolism resistance and overall plant resistance to drought are altered in the auxin perception mutant diageotropica ( dgt ). Our assessments demonstrate that the dgt mutants in tomato exhibit considerably smaller xylem vessels in stems (‐24%), leaf petioles (‐43%), and leaf midribs (‐34%) than the wild type. Alongside narrower vessels, dgt mutants exhibited greater xylem cell wall thickness‐to‐conduit diameter and greater leaf embolism resistance than the wild type. The water potential at 50% cumulative leaf embolism (P 50 ) of dgt and wild type was ‐1.39 and ‐1.14 MPa, respectively. Plants of dgt also exhibited higher stomatal safety margin (water potential difference between stomatal closure and P 50 ), needed a longer time to reach their P 50 in a dry‐down experiment, and showed a faster recovery in leaf gas exchange upon rehydration than the wild type. The impaired auxin signaling resulted in lower canopy area and stomatal conductance, which likely contributed to delaying the time for plants to reach hydraulic damage during drought. These findings demonstrate a clear association between structural and physiological changes and improved resistance against drought‐induced hydraulic dysfunction in the dgt tomato mutant.}, number={3}, journal={PHYSIOLOGIA PLANTARUM}, author={Andrade, Moab T. and Cardoso, Amanda A. and Oliveira, Leonardo A. and Pereira, Talitha S. and Haverroth, Eduardo J. and Souza, Genaina A. and Damatta, Fabio M. and Zsogon, Agustin and Martins, Samuel C. V.}, year={2024}, month={May} } @article{pereira_oliveira_andrade_haverroth_cardoso_martins_2024, title={Linking water-use strategies with drought resistance across herbaceous crops}, volume={176}, ISSN={["1399-3054"]}, url={http://dx.doi.org/10.1111/ppl.14114}, DOI={10.1111/ppl.14114}, abstractNote={AbstractWoody plants minimize xylem embolism formation during drought essentially by closing stomata at higher water potentials and/or by increasing the xylem resistance to embolism. Both of these mechanisms result in a higher stomatal safety margin (SSM), which is the water potential difference between stomatal closure and embolism formation. Here, we investigated whether increasing SSM represents a drought resistance mechanism for herbaceous plants and how the different water‐use strategies impact their survival. For that, we exposed four herbaceous crops with contrasting drought resistance to severe water deficit to assess drought‐induced damage and mortality. Unlike woody species, SSM was not associated with plant survival for herbaceous crops. Soybean, which presented the largest SSM across the four crops (1.67 MPa), exhibited the earliest mortality of leaves and whole plants as well as the highest rate of plant mortality (100%) at the end of the drought period. Cowpea, with an SSM of 0.63 MPa, was the most drought‐resistant species, with the latest leaf damage and the highest plant survival (100%). The most effective traits ensuring survival in herbaceous crops under severe drought were those related to drought avoidance mechanisms such as (1) early stomatal closure, (2) very low residual transpiration post‐stomatal closure, and (3) high capacitance pre‐ and post‐turgor loss.}, number={1}, journal={PHYSIOLOGIA PLANTARUM}, author={Pereira, Talitha S. and Oliveira, Leonardo A. and Andrade, Moab T. and Haverroth, Eduardo J. and Cardoso, Amanda A. and Martins, Samuel C. V.}, year={2024}, month={Jan} }