@article{weisberger_leon_gruner_levi_gaur_morgan_basinger_2023, title={Demographics of Palmer amaranth (Amaranthus palmeri) in annual and perennial cover crops}, volume={11}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2023.66}, DOI={10.1017/wsc.2023.66}, abstractNote={AbstractPalmer amaranth (Amaranthus palmeri S. Watson) is the most problematic weed of cotton (Gossypium hirsutum L.)-cropping systems in the U.S. Southeast. Heavy reliance on herbicides has selected for resistance to multiple herbicide mechanisms of action. Effective management of this weed may require the integration of cultural practices that limit germination, establishment, and growth. Cover crops have been promoted as a cultural practice that targets these processes. We conducted a 2-yr study in Georgia, USA, to measure the effects of two annual cover crops (cereal rye [Secale cereale L.] and crimson clover [Trifolium incarnatum L.]), a perennial living mulch (‘Durana®’ white clover [Trifolium repens L.]), and a bare ground control on A. palmeri population dynamics. The study was conducted in the absence of herbicides. Growth stages were integrated into a basic demographic model to evaluate differences in population trajectories. Cereal rye and living mulch treatments suppressed weed seedling recruitment (seedlings seed−1) 19.2 and 13 times and 12 and 25 times more than the bare ground control, respectively. Low recruitment was correlated positively with low light transmission (photosynthetic active radiation: above canopy photosynthetically active radiation [PAR]/below cover crop PAR) at the soil surface. Low recruitment rates were also negatively correlated with high survival rates. Greater survival rates and reduced adult plant densities resulted in greater biomass (g plant−1) and fecundity (seeds plant−1) in cereal rye and living mulch treatments in both years. The annual rate of population change (seeds seed−1) was equivalent across all treatments in the first year but was greater in the living mulch treatment in the second year. Our results highlight the potential of annual cover crops and living mulches for suppressing A. palmeri seedling recruitment and would be valuable tools as part of an integrated weed management strategy.}, journal={WEED SCIENCE}, author={Weisberger, David A. and Leon, Ramon G. and Gruner, Chandler E. and Levi, Matthew and Gaur, Nandita and Morgan, Gaylon and Basinger, Nicholas T.}, year={2023}, month={Nov} } @article{basinger_hestir_jennings_monks_everman_jordan_2022, title={Detection of Palmer amaranth (Amaranthus palmeri) and large crabgrass (Digitaria sanguinalis) with in situ hyperspectral remote sensing. I. Effects of weed density and soybean presence}, volume={70}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2021.81}, DOI={10.1017/wsc.2021.81}, abstractNote={AbstractThe utilization of remote sensing in agriculture has great potential to change the methods of field scouting for weeds. Previous remote sensing research has been focused on the ability to detect and differentiate between species. However, these studies have not addressed weed density variability throughout a field. Furthermore, the impact of changing phenology of crops and weeds within and between growing seasons has not been investigated. To address these research gaps, field studies were conducted in 2016 and 2017 at the Horticultural Crops Research Station near Clinton, NC. Two problematic weed species, Palmer amaranth (Amaranthus palmeri S. Watson) and large crabgrass [Digitaria sanguinalis (L.) Scop.], were planted at four densities in soybean [Glycine max (L.) Merr.]. Additionally, these weed densities were grown in the presence and absence of the crop to determine the influence of crop presence on the detection and discrimination of weed species and density. Hyperspectral data were collected over various phenological time points in each year. Differentiation between plant species and weed density was not consistent across cropping systems, phenology, or season. Weed species were distinguishable across more spectra when no soybean was present. In 2016, weed species were not distinguishable, while in 2017, differentiation occurred at 4 wk after planting (WAP) and 15 WAP when weeds were present with soybean. When soybean was not present, differentiation occurred only at 5 WAP in 2016 and at 3 WAP through 15 WAP in 2017. Differentiation between weed densities did occur in both years with and without soybean present, but weed density could be differentiated across more spectra when soybean was not present. This study demonstrates that weed and crop reflectance is dynamic throughout the season and that spectral reflectance can be affected by weed species and density.}, number={2}, journal={WEED SCIENCE}, author={Basinger, Nicholas T. and Hestir, Erin L. and Jennings, Katherine M. and Monks, David W. and Everman, Wesley J. and Jordan, David L.}, year={2022}, month={Mar}, pages={198–212} } @article{basinger_jennings_hestir_monks_jordan_everman_2020, title={Phenology affects differentiation of crop and weed species using hyperspectral remote sensing}, volume={34}, ISSN={["1550-2740"]}, url={https://doi.org/10.1017/wet.2020.92}, DOI={10.1017/wet.2020.92}, abstractNote={AbstractThe effect of plant phenology and canopy structure of four crops and four weed species on reflectance spectra were evaluated in 2016 and 2017 using in situ spectroscopy. Leaf-level and canopy-level reflectance were collected at multiple phenologic time points in each growing season. Reflectance values at 2 wk after planting (WAP) in both years indicated strong spectral differences between species across the visible (VIS; 350–700 nm), near-infrared (NIR; 701–1,300 nm), shortwave-infrared I (SWIR1; 1,301–1,900 nm), and shortwave-infrared II (SWIR2; 1,901–2,500 nm) regions. Results from this study indicate that plant spectral reflectance changes with plant phenology and is influenced by plant biophysical characteristics. Canopy-level differences were detected in both years across all dates except for 1 WAP in 2017. Species with similar canopy types (e.g., broadleaf prostrate, broadleaf erect, or grass/sedge) were more readily discriminated from species with different canopy types. Asynchronous phenology between species also resulted in spectral differences between species. SWIR1 and SWIR2 wavelengths are often not included in multispectral sensors but should be considered for species differentiation. Results from this research indicate that wavelengths in SWIR1 and SWIR2 in conjunction with VIS and NIR reflectance can provide differentiation across plant phenologies and, therefore should be considered for use in future sensor technologies for species differentiation.}, number={6}, journal={WEED TECHNOLOGY}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Hestir, Erin L. and Monks, David W. and Jordan, David L. and Everman, Wesley J.}, year={2020}, month={Dec}, pages={897–908} } @article{basinger_jennings_monks_jordan_everman_hestir_waldschmidt_smith_brownie_2019, title={Interspecific and intraspecific interference of Palmer amaranth (Amaranthus palmeri) and large crabgrass (Digitaria sanguinalis) in sweetpotato}, volume={67}, ISSN={["1550-2759"]}, DOI={10.1017/wsc.2019.16}, abstractNote={AbstractField studies were conducted in 2016 and 2017 in Clinton, NC, to determine the interspecific and intraspecific interference of Palmer amaranth (Amaranthus palmeri S. Watson) or large crabgrass [Digitaria sanguinalis (L.) Scop.] in ‘Covington’ sweetpotato [Ipomoea batatas (L.) Lam.]. Amaranthus palmeri and D. sanguinalis were established 1 d after sweetpotato transplanting and maintained season-long at 0, 1, 2, 4, 8 and 0, 1, 2, 4, 16 plants m−1 of row in the presence and absence of sweetpotato, respectively. Predicted yield loss for sweetpotato was 35% to 76% for D. sanguinalis at 1 to 16 plants m−1 of row and 50% to 79% for A. palmeri at 1 to 8 plants m−1 of row. Weed dry biomass per meter of row increased linearly with increasing weed density. Individual dry biomass of A. palmeri and D. sanguinalis was not affected by weed density when grown in the presence of sweetpotato. When grown without sweetpotato, individual weed dry biomass decreased 71% and 62% from 1 to 4 plants m−1 row for A. palmeri and D. sanguinalis, respectively. Individual weed dry biomass was not affected above 4 plants m−1 row to the highest densities of 8 and 16 plants m−1 row for A. palmeri and D. sanguinalis, respectively.}, number={4}, journal={WEED SCIENCE}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Everman, Wesley J. and Hestir, Erin L. and Waldschmidt, Matthew D. and Smith, Stephen C. and Brownie, Cavell}, year={2019}, month={Jul}, pages={426–432} } @article{basinger_jennings_monks_jordan_everman_hestir_bertucci_brownie_2019, title={Large crabgrass (Digitaria sanguinalis) and Palmer amaranth (Amaranthus palmeri) intraspecific and interspecific interference in soybean}, volume={67}, ISSN={["1550-2759"]}, url={https://doi.org/10.1017/wsc.2019.43}, DOI={10.1017/wsc.2019.43}, abstractNote={AbstractField studies were conducted in 2016 and 2017 at Clinton, NC, to quantify the effects of season-long interference of large crabgrass [Digitaria sanguinalis (L.) Scop.] and Palmer amaranth (Amaranthus palmeri S. Watson) on ‘AG6536’ soybean [Glycine max (L.) Merr.]. Weed density treatments consisted of 0, 1, 2, 4, and 8 plants m−2 for A. palmeri and 0, 1, 2, 4, and 16 plants m−2 for D. sanguinalis with (interspecific interference) and without (intraspecific interference) soybean to determine the impacts on weed biomass, soybean biomass, and seed yield. Biomass per square meter increased with increasing weed density for both weed species with and without soybean present. Biomass per square meter of D. sanguinalis was 617% and 37% greater when grown without soybean than with soybean, for 1 and 16 plants m−2 respectively. Biomass per square meter of A. palmeri was 272% and 115% greater when grown without soybean than with soybean for 1 and 8 plants m−2, respectively. Biomass per plant for D. sanguinalis and A. palmeri grown without soybean was greatest at the 1 plant m−2 density. Biomass per plant of D. sanguinalis plants across measured densities was 33% to 83% greater when grown without soybean compared with biomass per plant when soybean was present for 1 and 16 plants m−2, respectively. Similarly, biomass per plant for A. palmeri was 56% to 74% greater when grown without soybean for 1 and 8 plants m−2, respectively. Biomass per plant of either weed species was not affected by weed density when grown with soybean due to interspecific competition with soybean. Yield loss for soybean grown with A. palmeri ranged from 14% to 37% for densities of 1 to 8 plants m−2, respectively, with a maximum yield loss estimate of 49%. Similarly, predicted loss for soybean grown with D. sanguinalis was 0 % to 37% for densities of 1 to 16 m−2 with a maximum yield loss estimate of 50%. Soybean biomass was not affected by weed species or density. Results from these studies indicate that A. palmeri is more competitive than D. sanguinalis at lower densities, but that similar yield loss can occur when densities greater than 4 plants m−2 of either weed are present.}, number={6}, journal={WEED SCIENCE}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Everman, Wesley J. and Hestir, Erin L. and Bertucci, Matthew B. and Brownie, Cavell}, year={2019}, month={Nov}, pages={649–656} } @article{basinger_jennings_monks_mitchem_perkins-veazie_chaudhari_2018, title={In-row Vegetation-free Strip Width Effect on Established 'Navaho' Blackberry}, volume={32}, ISSN={["1550-2740"]}, DOI={10.1017/wet.2017.85}, abstractNote={AbstractA field study was conducted in 2014 and 2015 in an established 5-yr old commercial blackberry planting to determine the effect of vegetation-free strip width (VFSW) on ‘Navaho’ blackberry vegetative growth, yield and fruit quality parameters, identify the optimum VFSW for blackberry plantings in the southeastern USA, and provide practical groundcover management recommendations that can increase the productivity of blackberry plantings. In Fall 2013, tall fescue was seeded in-row and allowed to establish. In Spring 2014, VFSW treatments (0, 0.6, 0.9, 1.2, and 1.8 m) were established in a randomized complete block statistical design with four replications. Blackberry growth measurements included primocane and floricane number, cane diam, individual fruit weight and yield. Fruit quality measurements included, soluble solids concentration (SSC), titratable acidity (TA) and pH. Primocane number increased with increasing VFSW in both years. Floricane number increased with increasing VFSW in 2014. Primocane diam decreased with increasing VFSW in 2014 but had a quadratic response in 2015. Berry weight and cumulative yield increased with increasing VFSW in both years. The only berry quality component affected by VFSW was pH, which decreased as VFSW increased. Results indicate that widening the VFSW in blackberry from the current recommendation of 1.2 m to 1.8 m could provide growers a means to increase plant growth, berry weight, and cumulative yield blackberry of a planting.}, number={1}, journal={WEED TECHNOLOGY}, author={Basinger, Nicholas T. and Jennings, Katherine M. and Monks, David W. and Mitchem, Wayne E. and Perkins-Veazie, Penelope M. and Chaudhari, Sushila}, year={2018}, pages={85–89} } @article{chaudhari_jennings_monks_jordan_gunter_basinger_louws_2016, title={Response of Eggplant (Solanum melongena) Grafted onto Tomato (Solanum lycopersicum) Rootstock to Herbicides}, volume={30}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-15-00079.1}, abstractNote={Tomato rootstocks have been successfully used for eggplant production. However, the safety of herbicides registered in tomato has not been tested on grafted eggplant, which is a combination of tomato rootstock and eggplant scion. Greenhouse and field experiments were conducted to determine response of grafted eggplant on tomato rootstock to napropamide, metribuzin, halosulfuron, trifluralin,S-metolachlor, and fomesafen herbicides. In greenhouse experiments, herbicide treatments included pretransplantS-metolachlor (400 and 800 g ai ha−1), pre- or posttransplant metribuzin (140 and 280 g ai ha−1), and posttransplant halosulfuron (18 and 36 g ai ha−1). In field experiments, herbicide treatments included pretransplant fomesafen (280 and 420 g ai ha−1), halosulfuron (39 and 52 g ha−1), metribuzin (280 and 550 g ha−1), napropamide (1,120 and 2,240 g ai ha−1),S-metolachlor (800 and 1,060 g ha−1), and trifluralin (560 and 840 g ai ha−1). The eggplant cultivar ‘Santana' was used as the scion and nongrafted control, and two hybrid tomatoes ‘RST-04−106-T' and ‘Maxifort' were used as rootstocks for grafted plants. In both greenhouse and field experiments, there was no difference between grafted and nongrafted eggplant in terms of injury caused by herbicides. Metribuzin posttransplant at 140 and 280 g ha−1caused 94 and 100% injury to grafted and nongrafted eggplant 4 wk after treatment. In field experiments, pretransplant fomesafen, napropamide,S-metolachlor, and trifluralin caused less than 10% injury and no yield reduction in grafted and nongrafted eggplant. However, metribuzin caused injury and yield reduction in both grafted and nongrafted eggplant. Metribuzin at 550 g ha−1caused 60 and 81% plant stand loss in 2013 and 2014, respectively. Halosulfuron reduced yield 24% in both grafted and nongrafted eggplant compared to nontreated control in 2013 but did not reduce yield in 2014. The pretransplantS-metolachlor, napropamide, fomesafen, and trifluralin are safe to use on eggplant grafted onto tomato rootstock, and will be a valuable addition to the toolkit of eggplant growers.}, number={1}, journal={WEED TECHNOLOGY}, author={Chaudhari, Sushila and Jennings, Katherine M. and Monks, David W. and Jordan, David L. and Gunter, Christopher C. and Basinger, Nicholas T. and Louws, Frank J.}, year={2016}, pages={207–216} }