@article{wei_grieger_cummings_loschin_kuzma_2023, title={Identifying sustainability assessment parameters for genetically engineered agrifoods}, volume={7}, ISSN={["2572-2611"]}, url={https://doi.org/10.1002/ppp3.10411}, DOI={10.1002/ppp3.10411}, abstractNote={Societal Impact StatementA diverse portfolio of genetically engineered food crops, as well as animal livestock and fish, are currently being developed and commercialized. To ensure their contributions to long‐term sustainability, a broad range of environmental, health, ethical, and societal parameters should be used in their evaluations. This paper proposes a set of parameters to evaluate the sustainability of genetically engineered food and agriculture products and discusses mechanisms to improve their governance and oversight. With such holistic evaluations, genetic engineering applications that are deemed beneficial to sustainable agriculture could be identified in an effort to foster sustainability.SummaryTo achieve international sustainable development goals, food and agricultural production need to rely on sustainable and resilient practices. Traditional breeding as well as the use of new agricultural technologies, including genetic engineering and gene editing, have the potential to help achieve sustainable agrifood production. Although numerous oversight mechanisms exist to guarantee the secure and sustainable advancement and utilization of genetically engineered agrifoods, the majority of these mechanisms heavily depend on a narrow set of parameters to assess risks and safety concerning human health and nontarget organisms. However, a more comprehensive range of parameters should be considered to promote environmental and social sustainability in a more holistic manner. This Opinion article argues that to achieve a more sustainable agrifood production that relies on genetic engineering, governance systems related to new agrifood biotechnologies should incorporate a broader array of environmental, health, ethical, and societal factors to ensure their sustainability in the long‐term. To facilitate this process, we propose a set of parameters to help evaluate the sustainability of agrifoods that rely on genetic engineering. We then discuss major challenges and opportunities for formalizing sustainability parameters in US governance policy and decision‐making systems. Overall, this work contributes to further developing a more comprehensive assessment framework that aims to minimize potential risks and maximize potential benefits of agrifood biotechnology while also fostering sustainability.}, journal={PLANTS PEOPLE PLANET}, author={Wei, Wei and Grieger, Khara and Cummings, Christopher L. and Loschin, Nick and Kuzma, Jennifer}, year={2023}, month={Jul} } @article{furgurson_loschin_butoto_abugu_gillespie_brown_ferraro_speicher_stokes_budnick_et al._2023, title={Seizing the policy moment in crop biotech regulation: an interdisciplinary response to the Executive Order on biotechnology}, volume={11}, ISSN={["2296-4185"]}, DOI={10.3389/fbioe.2023.1241537}, abstractNote={North Carolina State University Forestry and Environmental Resources, Raleigh, NC, United States, North Carolina State University Genetic Engineering and Society Center, Raleigh, NC, United States, North Carolina State University Applied Ecology, Raleigh, NC, United States, North Carolina State University Crop and Soil Sciences, Raleigh, NC, United States, North Carolina State University Horticultural Science, Raleigh, NC, United States, North Carolina State University Entomology and Plant Pathology, Raleigh, NC, United States, North Carolina State University Food, Bioprocessing and Nutrition Sciences, Raleigh, NC, United States, North Carolina State University Agricultural and Resource Economics, Raleigh, NC, United States, North Carolina State University Communication, Rhetoric, and Digital Media, Raleigh, NC, United States, North Carolina State University Biochemistry, Raleigh, NC, United States, North Carolina State University Plant Biology, Raleigh, NC, United States, North Carolina State University Anthropology, Raleigh, NC, United States}, journal={FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY}, author={Furgurson, Jill and Loschin, Nick and Butoto, Eric and Abugu, Modesta and Gillespie, Christopher J. and Brown, Rebekah and Ferraro, Greg and Speicher, Nolan and Stokes, Ruthie and Budnick, Asa and et al.}, year={2023}, month={Aug} } @article{trump_cummings_loschin_keisler_wells_linkov_2023, title={The worsening divergence of biotechnology: the importance of risk culture}, volume={11}, ISSN={["2296-4185"]}, DOI={10.3389/fbioe.2023.1250298}, abstractNote={In the last 20 years, the field of biotechnology has made significant progress and attracted substantial investments, leading to different paths of technological modernization among nations. As a result, there is now an international divide in the commercial and intellectual capabilities of biotechnology, and the implications of this divergence are not well understood. This raises important questions about why global actors are motivated to participate in biotechnology modernization, the challenges they face in achieving their goals, and the possible future direction of global biotechnology development. Using the framework of prospect theory, this paper explores the role of risk culture as a fundamental factor contributing to this divergence. It aims to assess the risks and benefits associated with the early adoption of biotechnology and the regulatory frameworks that shape the development and acceptance of biotechnological innovations. By doing so, it provides valuable insights into the future of biotechnology development and its potential impact on the global landscape.}, journal={FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY}, author={Trump, Benjamin D. and Cummings, Christopher L. and Loschin, Nicholas and Keisler, Jeffrey M. and Wells, Emily M. and Linkov, Igor}, year={2023}, month={Aug} }