@article{rivera_hesterberg_kaur_duckworth_2017, title={Chemical Speciation of Potentially Toxic Trace Metals in Coal Fly Ash Associated with the Kingston Fly Ash Spill}, volume={31}, ISSN={["1520-5029"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85029897922&partnerID=MN8TOARS}, DOI={10.1021/acs.energyfuels.7b00020}, abstractNote={Coal ash released into the environment may release toxic trace elements into water, sediments, and soils. The objective of this study was to characterize the chemical speciation of As, Se, Cu, Zn, Cr, and U in coal fly ash samples related to the 2008 Kingston ash spill. Three ash samples were analyzed using X-ray absorption spectroscopy (XAS) to determine oxidation states or dominant species of trace elements, which were previously found to range in concentration from 8 to 20 mg kg–1. Linear combination fitting (LCF) of X-ray absorption near edge structure (XANES) spectra from ash samples indicated that both reduced and oxidized forms of the trace elements were present in the fly ash samples. We used the mineralogical composition of the fly ash to select the most relevant standards for LCF fitting of XANES spectra, which included metal-doped glasses, trace elements sorbed to iron oxy(hydroxides), and pure mineral phases for each element. Arsenic K-edge XANES spectra were best fit as oxidized As(V) (95–100...}, number={9}, journal={ENERGY & FUELS}, author={Rivera, Nelson and Hesterberg, Dean and Kaur, Navdeep and Duckworth, Owen W.}, year={2017}, month={Sep}, pages={9652–9659} } @article{duckworth_rivera_gardner_andrews_santelli_polizzotto_2017, title={Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system}, volume={19}, ISSN={["2050-7895"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-85010739340&partnerID=MN8TOARS}, DOI={10.1039/c6em00525j}, abstractNote={Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals.}, number={1}, journal={ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS}, author={Duckworth, O. W. and Rivera, N. A. and Gardner, T. G. and Andrews, M. Y. and Santelli, C. M. and Polizzotto, M. L.}, year={2017}, month={Jan}, pages={50–58} } @article{gillispie_austin_rivera_bolich_duckworth_bradley_amoozegar_hesterberg_polizzotto_2016, title={Soil Weathering as an Engine for Manganese Contamination of Well Water}, volume={50}, ISSN={["1520-5851"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84988464669&partnerID=MN8TOARS}, DOI={10.1021/acs.est.6b01686}, abstractNote={Manganese (Mn) contamination of well water is recognized as an environmental health concern. In the southeastern Piedmont region of the United States, well water Mn concentrations can be >2 orders of magnitude above health limits, but the specific sources and causes of elevated Mn in groundwater are generally unknown. Here, using field, laboratory, spectroscopic, and geospatial analyses, we propose that natural pedogenetic and hydrogeochemical processes couple to export Mn from the near-surface to fractured-bedrock aquifers within the Piedmont. Dissolved Mn concentrations are greatest just below the water table and decrease with depth. Solid-phase concentration, chemical extraction, and X-ray absorption spectroscopy data show that secondary Mn oxides accumulate near the water table within the chemically weathering saprolite, whereas less-reactive, primary Mn-bearing minerals dominate Mn speciation within the physically weathered transition zone and bedrock. Mass-balance calculations indicate soil weathering has depleted over 40% of the original solid-phase Mn from the near-surface, and hydrologic gradients provide a driving force for downward delivery of Mn. Overall, we estimate that >1 million people in the southeastern Piedmont consume well water containing Mn at concentrations exceeding recommended standards, and collectively, these results suggest that integrated soil-bedrock-system analyses are needed to predict and manage Mn in drinking-water wells.}, number={18}, journal={ENVIRONMENTAL SCIENCE & TECHNOLOGY}, author={Gillispie, Elizabeth C. and Austin, Robert E. and Rivera, Nelson A. and Bolich, Rick and Duckworth, Owen W. and Bradley, Phil and Amoozegar, Aziz and Hesterberg, Dean and Polizzotto, Matthew L.}, year={2016}, month={Sep}, pages={9963–9971} } @article{rivera_kaur_hesterberg_ward_austin_duckworth_2015, title={Chemical Composition, Speciation, and Elemental Associations in Coal Fly Ash Samples Related to the Kingston Ash Spill}, volume={29}, ISSN={["1520-5029"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-84923296129&partnerID=MN8TOARS}, DOI={10.1021/ef501258m}, abstractNote={Environmental impacts of potentially toxic trace elements from coal fly ash are controlled in part by the mineralogy of the ash matrix and the chemical speciation of the trace elements. Our objective was to characterize the chemical and mineralogical composition of fly ash samples that are pertinent to the 2008 release of coal ash from a containment area at the Tennessee Valley Authority (TVA) Kingston fossil plant, which left 4 to 500 t of trace elements in adjoining river systems. Three fly ash samples were analyzed for elemental composition by digestion or neutron activation analysis, mineralogy and macroelement speciation by conventional and synchrotron-based X-ray diffraction (XRD and SXRD) and X-ray absorption spectroscopy (XAS), and for spatial associations of elements by electron probe microanalysis (EPMA). Ash samples were mainly composed of Si (20–27% w/w), Al (10–14% w/w), Fe (4–6% w/w), and Ca (4–6% w/w). Concentrations of selected trace elements ranged from 8 to 1480 mg kg–1, with the followi...}, number={2}, journal={ENERGY & FUELS}, author={Rivera, Nelson and Kaur, Navdeep and Hesterberg, Dean and Ward, Colin R. and Austin, Robert E. and Duckworth, Owen W.}, year={2015}, month={Feb}, pages={954–967} }