Nonoy Bandillo Bazrafkan, A., Worral, H., Bandillo, N., & Flores, J. P. (2025). Accurate Plant Height Estimation in Pulse Crops through Integration of LiDAR, Multispectral Information, and Machine Learning. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2025.101517 Uhdre, R., Coyne, C. J., Bourland, B., Piaskowski, J., Zheng, P., Ganjyal, G. M., … Warburton, M. L. (2025). Association study of crude seed protein and fat concentration in a USDA pea diversity panel. The Plant Genome. https://doi.org/10.1002/tpg2.20485 Batista, L. A., Bandillo, N., Friskop, A., & Green, A. (2024). Accelerating genetic gain through strategic speed breeding in spring wheat. Crop Science. https://doi.org/10.1002/csc2.21380 Johnson, J. P., Piche, L., Worral, H., Atanda, S. A., Coyne, C. J., McGee, R. J., … Bandillo, N. (2024). Effective population size in field pea. BMC Genomics. https://doi.org/10.1186/s12864-024-10587-6 Atanda, S. A., & Bandillo, N. (2024). Genomic-inferred cross-selection methods for multi-trait improvement in a recurrent selection breeding program. Plant Methods. https://doi.org/10.1186/s13007-024-01258-4 Dariva, F. D., Arman, A., Morales, M., Navasca, H., Shah, R., Atanda, S. A., … Bandillo, N. (2024). Identification of novel candidate genes for Ascochyta blight resistance in chickpea. SCIENTIFIC REPORTS, 14(1). https://doi.org/10.1038/s41598-024-83007-0 Saludares, R. A., Atanda, S. A., Piche, L., Worral, H., Dariva, F., McPhee, K., & Bandillo, N. (2024, August 4). Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop. PLANT GENOME, Vol. 8. https://doi.org/10.1002/tpg2.20496 Saludares, R. A., Atanda, S. A., Piche, L., Worral, H., Dariva, F., McPhee, K., & Bandillo, N. (2024, February 21). Multi-trait multi-environment genomic prediction of preliminary yield trials in pulse crops. https://doi.org/10.1101/2024.02.18.580909 Bazrafkan, A., Navasca, H., Worral, H., Oduor, P., Delavarpour, N., Morales, M. A., … Flores, J. P. (2024). Predicting lodging severity in dry peas using UAS-mounted RGB, LIDAR, and multispectral sensors. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2024.101157 Bari, M. A. A., Fonseka, D., Stenger, J., Zitnick‐Anderson, K., Atanda, S. A., Morales, M., … Bandillo, N. (2023). A greenhouse‐based high‐throughput phenotyping platform for identification and genetic dissection of resistance to Aphanomyces root rot in field pea. The Plant Phenome Journal. https://doi.org/10.1002/ppj2.20063 Bazrafkan, A., Delavarpour, N., Oduor, P. G., Bandillo, N., & Flores, J. P. (2023). An Overview of Using Unmanned Aerial System Mounted Sensors to Measure Plant Above-Ground Biomass. Remote Sensing. https://doi.org/10.3390/rs15143543 Chang, L., ZIXUAN, G. U., Bandillo, N., CHEN, B. I. N. G. C. A. N., & JIAJIA, R. A. O. (2023). Fractionation, Structural Characteristics, Functionality, Aromatic Profile, and In Vitro Digestibility of Lentil (Lens culinaris) Proteins. ACS Food Science Technology. https://doi.org/10.1021/acsfoodscitech.2c00429 Bandillo, N. B., Jarquin, D., Posadas, L. G., Lorenz, A. J., & Graef, G. L. (2023). Genomic selection performs as effectively as phenotypic selection for increasing seed yield in soybean. The Plant Genome. https://doi.org/10.1002/tpg2.20285 Bazrafkan, A., Navasca, H., Kim, J., Morales, M., Johnson, J. P., Delavarpour, N., … Flores, J. P. (2023). Predicting Dry Pea Maturity Using Machine Learning and Advanced Sensor Fusion with Unmanned Aerial Systems (UASs). Remote Sensing. https://doi.org/10.3390/rs15112758 Bandillo, N., Worral, H., Forster, S. M., Stefaniak, T., Piche, L., Ross, A., … McPhee, K. (2023). Registration of ‘ND Victory’ green field pea. Journal of Plant Registrations. https://doi.org/10.1002/plr2.20266 Roy, J., Río Mendoza, L. E., Bandillo, N., McClean, P. E., & Rahman, M. (2022). Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage. Theoretical and Applied Genetics. https://doi.org/10.1007/s00122-022-04104-0 Atanda, S. A., Steffes, J., lan, Y., Bari, M. A. A., Kim, J. H., Morales, M., … Bandillo, N. (2022). Multi‐trait genomic prediction improves selection accuracy for enhancing seed mineral concentrations in pea. The Plant Genome. https://doi.org/10.1002/tpg2.20260 Escobar, E., oladzadabbasabadi, Simons, K., Miklas, P., Lee, R. K., Schroder, S., … Osorno, J. M. (2022). New genomic regions associated with white mold resistance in dry bean using a MAGIC population. The Plant Genome. https://doi.org/10.1002/tpg2.20190 Chang, L., Lan, Y., Bandillo, N., Ohm, J.-B., Chen, B., & Rao, J. (2022). Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2021.107165 Lozano, R., Gazave, E., Santos, J. P. R., Stetter, M. G., Valluru, R., Bandillo, N., … Gore, M. A. (2021). Comparative evolutionary genetics of deleterious load in sorghum and maize. Nature Plants. https://doi.org/10.1038/s41477-020-00834-5 Shim, J., Bandillo, N. B., & Angeles-Shim, R. (2021). Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton (Gossypium hirsutum L.). Plants. https://doi.org/10.3390/plants10071300 Bari, M. A. A., Zheng, P., Viera, I., Worral, H., Szwiec, S., Ma, Y., … Bandillo, N. (2021). Harnessing Genetic Diversity in the USDA Pea Germplasm Collection Through Genomic Prediction. Frontiers in Genetics. https://doi.org/10.3389/fgene.2021.707754 Pignon, C. P., Fernandes, S. B., Valluru, R., Bandillo, N., Lozano, R., Buckler, E., … Leakey, A. D. B. (2021, May 7). Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. https://doi.org/10.1101/2021.05.06.442962 Pignon, C. P., Fernandes, S. B., Valluru, R., Bandillo, N., Lozano, R., Buckler, E., … Leakey, A. D. B. (2021). Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. Plant Physiology, 8. https://doi.org/10.1093/plphys/kiab395 Bandillo, N., Stefaniak, T., Worral, H., Mihov, M., Ostlie, M., Schatz, B., … McPhee, K. (2021). Registration of ‘ND Crown’ chickpea. Journal of Plant Registrations, 15(2), 278–284. https://doi.org/10.1002/plr2.20122 Bandillo, N., Stefaniak, T., Worral, H., Jain, S., Ostlie, M., Schatz, B., … McPhee, K. (2021). Registration of ‘ND Dawn’ large yellow pea. Journal of Plant Registrations. https://doi.org/10.1002/plr2.20097 Cui, L., Bandillo, N., Wang, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2020.106008 Lozano, R., Gazave, E., Santos, J. P. R., Stetter, M., Valluru, R., Bandillo, N., … Gore, M. A. (2019, September 23). Comparative evolutionary analysis and prediction of deleterious mutation patterns between sorghum and maize (Vol. 9). Vol. 9. https://doi.org/10.1101/777623 Valluru, R., Gazave, E. E., Fernandes, S. B., Ferguson, J. N., Lozano, R., Hirannaiah, P., … Bandillo, N. (2019). Deleterious mutation burden and its association with complex traits in sorghum (Sorghum bicolor). Genetics, 211(3), 1075–1087. https://doi.org/10.1534/genetics.118.301742 Zhou, S., Kremling, K. A., Bandillo, N., Richter, A., Zhang, Y. K., Ahern, K. R., … Jander, G. (2019). Metabolome-scale genome-wideassociation studies reveal chemical diversity and genetic control of maize specialized metabolites. Plant Cell, 31(5), 937–955. https://doi.org/10.1105/tpc.18.00772 Kremling, K. A. G., Diepenbrock, C. H., Gore, M. A., Buckler, E. S., & Bandillo, N. B. (2019). Transcriptome-Wide Association Supplements Genome-Wide Association in Zea mays. G3 (Bethesda, Md.), 9(9), 3023–3033. https://doi.org/10.1534/g3.119.400549 Valluru, R., Gazave, E. E., Fernandes, S. B., Ferguson, J. N., Lozano, R., Hirannaiah, P., … Bandillo, N. (2018, June). Leveraging mutational burden for complex trait prediction in sorghum. https://doi.org/10.1101/357418 Shaoqun, Z., Kremling, K. A., Nonoy, B., Annett, R., Zhang, Y. K., Ahern, K. R., … Georg, J. (2018, October). Metabolome-scale genome-wide association studies reveal chemical diversity and genetic control of maize specialized metabolites. https://doi.org/10.1101/450338 Kremling, K. A. G., Diepenbrock, C. H., Gore, M. A., Buckler, E. S., & Bandillo, N. B. (2018, July). Transcriptome-wide association supplements genome-wide association in Zea mays. https://doi.org/10.1101/363242 Campbell, M. T., Bandillo, N., Al Shiblawi, F. R. A., Sharma, S., Liu, K., Du, Q., … Walia, H. (2017). Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genetics, 13(6). https://doi.org/10.1371/journal.pgen.1006823 Bandillo, N. B., Anderson, J. E., Kantar, M. B., Stupar, R. M., Specht, J. E., Graef, G. L., & Lorenz, A. J. (2017). Dissecting the Genetic Basis of Local Adaptation in Soybean. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-17342-w Bandillo, N. B., Lorenz, A. J., Graef, G. L., Jarquin, D., Hyten, D. L., Nelson, R. L., & Specht, J. E. (2017). Genome-wide association mapping of qualitatively inherited traits in a germplasm collection. Plant Genome, 10(2). https://doi.org/10.3835/plantgenome2016.06.0054 Bandillo, N., Jarquin, D., Song, Q., Nelson, R., Cregan, P., Specht, J., & Lorenz, A. (2015). A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome, 8(3). https://doi.org/10.3835/plantgenome2015.04.0024 Bandillo, N. B., Carpena, A. L., Ramos, J. M., & Brar, D. S. (2014). Phenotypic and molecular characterization of tungro resistant introgression lines derived from the cross Oryza sativa L. × Oryza rufipogon Griff. Philippine Journal of Crop Science, 39, 1–10. https://doi.org/10.5555/20143172593 Multi-parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding. (2013). Rice, 6(1). https://doi.org/10.1186/1939-8433-6-11 Multi-parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding. (2013). Rice, 6(1), 1–15. https://doi.org/10.1186/1939-8433-6-1