@misc{carter_cheng_kapoor_meletharayil_drake_2021, title={Invited review: Microfiltration-derived casein and whey proteins from milk}, volume={104}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2020-18811}, abstractNote={Milk, a rich source of nutrients, can be fractionated into a wide range of components for use in foods and beverages. With advancements in filtration technologies, micellar caseins and milk-derived whey proteins are now produced from skim milk using microfiltration. Microfiltered ingredients offer unique functional and nutritional benefits that can be exploited in new product development. Microfiltration offers promise in cheesemaking, where microfiltered milk can be used for protein standardization to improve the yield and consistency of cheese and help with operation throughputs. Micellar casein concentrates and milk whey proteins could offer unique functional and flavor properties in various food applications. Consumer desires for safe, nutritious, and clean-label foods could be potential growth opportunities for these new ingredients. The application of micellar casein concentrates in protein standardization could offer a window of opportunity to US cheese makers by improving yields and throughputs in manufacturing plants.}, number={3}, journal={JOURNAL OF DAIRY SCIENCE}, author={Carter, B. G. and Cheng, N. and Kapoor, R. and Meletharayil, G. H. and Drake, M. A.}, year={2021}, month={Mar}, pages={2465–2479} } @article{vogel_carter_cheng_barbano_drake_2021, title={Ready-to-drink protein beverages: Effects of milk protein concentration and type on flavor}, volume={104}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2021-20522}, abstractNote={This study evaluated the role of protein concentration and milk protein ingredient [serum protein isolate (SPI), micellar casein concentrate (MCC), or milk protein concentrate (MPC)] on sensory properties of vanilla ready-to-drink (RTD) protein beverages. The RTD beverages were manufactured from 5 different liquid milk protein blends: 100% MCC, 100% MPC, 18:82 SPI:MCC, 50:50 SPI:MCC, and 50:50 SPI:MPC, at 2 different protein concentrations: 6.3% and 10.5% (wt/wt) protein (15 or 25 g of protein per 237 mL) with 0.5% (wt/wt) fat and 0.7% (wt/wt) lactose. Dipotassium phosphate, carrageenan, cellulose gum, sucralose, and vanilla flavor were included. Blended beverages were preheated to 60°C, homogenized (20.7 MPa), and cooled to 8°C. The beverages were then preheated to 90°C and ultrapasteurized (141°C, 3 s) by direct steam injection followed by vacuum cooling to 86°C and homogenized again (17.2 MPa first stage, 3.5 MPa second stage). Beverages were cooled to 8°C, filled into sanitized bottles, and stored at 4°C. Initial testing of RTD beverages included proximate analyses and aerobic plate count and coliform count. Volatile sulfur compounds and sensory properties were evaluated through 8-wk storage at 4°C. Astringency and sensory viscosity were higher and vanillin flavor was lower in beverages containing 10.5% protein compared with 6.3% protein, and sulfur/eggy flavor, astringency, and viscosity were higher, and sweet aromatic/vanillin flavor was lower in beverages with higher serum protein as a percentage of true protein within each protein content. Volatile compound analysis of headspace vanillin and sulfur compounds was consistent with sensory results: beverages with 50% serum protein as a percentage of true protein and 10.5% protein had the highest concentrations of sulfur volatiles and lower vanillin compared with other beverages. Sulfur volatiles and vanillin, as well as sulfur/eggy and sweet aromatic/vanillin flavors, decreased in all beverages with storage time. These results will enable manufacturers to select or optimize protein blends to better formulate RTD beverages to provide consumers with a protein beverage with high protein content and desired flavor and functional properties.}, number={10}, journal={JOURNAL OF DAIRY SCIENCE}, author={Vogel, Kenneth G., III and Carter, B. G. and Cheng, N. and Barbano, D. M. and Drake, M. A.}, year={2021}, month={Oct}, pages={10640–10653} } @article{cheng_barbano_drake_2019, title={Effect of pasteurization and fat, protein, casein to serum protein ratio, and milk temperature on milk beverage color and viscosity}, volume={102}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2018-15739}, abstractNote={Our goal was to determine the effect of pasteurization-homogenization, fat and protein concentration, proportion of milk protein that is casein and serum protein, and temperature on sensory and instrumental measures of viscosity and color of milk-based beverages. A second goal was to use instrumental measures of whiteness and yellowness to predict sensory measures of whiteness and yellowness. A complete balanced 3 factor (fat, true protein, and casein as a percentage of true protein) design was applied with 3 levels of fat (0.2, 1.0 and 2.0%), 4 levels of true protein (3.00, 3.67, 4.34, and 5.00%) within each fat level, and 5 levels of casein as a percentage of true protein (CN%TP; 5, 25, 50, 75, and 80%) within each protein level for beverage formulation. Instrumental color and viscosity, and visual sensory color analyses were done on each beverage formulation. For unpasteurized beverages across 3 fat levels (0.2, 1, and 2%), changes in CN%TP had the largest effect on L values, sensory whiteness, opacity, color intensity, and yellowness, whereas changes in fat concentration had a stronger influence on a and b* values. Increasing CN%TP from 5 to 80% increased L values, sensory whiteness, and opacity, and decreased sensory color intensity and yellowness. The a and b* values increased with increasing fat concentration. For unpasteurized milk protein beverages within each fat level, variation in CN%TP dominated the changes in L values, sensory whiteness, and opacity, and decreased a and b* values, sensory color intensity, and yellowness. The effect of heat (pasteurization and homogenization) and its interaction terms had the second largest effect on color of milk protein beverages with respect to instrumental color data and sensory appearance attributes. Heat increased L values, sensory whiteness, and opacity, and decreased a and b* values, sensory color intensity, and yellowness. Increases in temperature decreased instrumental viscosity and changes in protein concentration and CN%TP had a greater effect on instrument viscosity data within each temperature (4, 20, and 50°C) than fat. Sensory perception of yellowness was not highly correlated with b* values. Multiple linear regressions of L, a, and b* values produced more robust predictions for both sensory whiteness and yellowness than simple linear regression with L and b* values alone, and may be a useful instrumental approach for quality control of sensory whiteness and yellowness of milk protein beverages.}, number={3}, journal={JOURNAL OF DAIRY SCIENCE}, author={Cheng, Ni and Barbano, David M. and Drake, Mary Anne}, year={2019}, month={Mar}, pages={2022–2043} } @article{cheng_barbano_drake_2019, title={Effects of milk fat, casein, and serum protein concentrations on sensory properties of milk-based beverages}, volume={102}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2018-16179}, abstractNote={Our goal was to determine the effect of systematically controlled variation in milk fat, true protein, casein, and serum protein concentrations on the sensory color, flavor and texture properties, instrumental color and viscosity, and milk fat globule size distribution of milk-based beverages. Beverage formulations were based on a complete balanced 3-factor (fat, true protein, and casein as a percentage of true protein) design with 3 fat levels (0.2, 1.0, and 2.0%), 4 true protein (TP) levels (3.00, 3.67, 4.34, and 5.00%) within each fat level, and 5 casein as a percentage of true protein (CN%TP) levels (5, 25, 50, 75, and 80%) within each protein level (for a total of 60 formulations within each of 2 replicates). Instrumental measures of Hunter L and a values and Commission Internationale de l'Éclairage (CIE) b* values, instrumental viscosity, particle size, flavor, sensory texture and sensory appearance evaluations were done on each pasteurized/homogenized beverage formulation. Within each of the 3 fat levels, higher serum protein concentration drove higher aroma intensity, sweet aromatic, cooked/sulfur, cardboard/doughy flavors, and sensory yellowness scores, whereas higher casein concentration drove higher instrumental viscosity in milk protein beverages. Increasing serum protein concentration increased yellowness, sweet aromatic, aroma intensity, cooked/sulfur, and cardboard/doughy flavors across all fat levels and also had the largest effect on L, a, and b* values, sensory whiteness, and opacity within each fat level. Increases in true protein increased throat cling and astringency intensities. Increases in fat concentration were correlated with higher L, a, and b* values, larger particle size, and increased sensory whiteness, mouth coating, cooked/milky, and milkfat flavors. Multiple linear regression of L, a, and b* values produced better predictions of sensory whiteness and yellowness of pasteurized milk protein beverages than simple linear regression of L or b* values, respectively. Formulating milk protein beverages to a higher true protein level increased astringency regardless of fat level. When formulating milk protein beverages, a product developer has a wide range of milk-based protein ingredient choices that differ in price and change price relationship across time. Understanding the expected relative effect of different milk protein ingredients on the textural and flavor characteristics of milk-based beverages could be used to help guide product reformulation decisions and ingredient choices to achieve a specific sensory profile while controlling total beverage ingredient cost.}, number={10}, journal={JOURNAL OF DAIRY SCIENCE}, author={Cheng, Ni and Barbano, David M. and Drake, MaryAnne}, year={2019}, month={Oct}, pages={8670–8690} } @article{cheng_barbano_drake_2018, title={Hunter versus CIE color measurement systems for analysis of milk-based beverages}, volume={101}, ISSN={["1525-3198"]}, DOI={10.3168/jds.2017-14197}, abstractNote={The objective of our work was to determine the differences in sensitivity of Hunter and International Commission on Illumination (CIE) methods at 2 different viewer angles (2 and 10°) for measurement of whiteness, red/green, and blue/yellow color of milk-based beverages over a range of composition. Sixty combinations of milk-based beverages were formulated (2 replicates) with a range of fat level from 0.2 to 2%, true protein level from 3 to 5%, and casein as a percent of true protein from 5 to 80% to provide a wide range of milk-based beverage color. In addition, commercial skim, 1 and 2% fat high-temperature, short-time pasteurized fluid milks were analyzed. All beverage formulations were HTST pasteurized and cooled to 4°C before analysis. Color measurement viewer angle (2 vs. 10°) had very little effect on objective color measures of milk-based beverages with a wide range of composition for either the Hunter or CIE color measurement system. Temperature (4, 20, and 50°C) of color measurement had a large effect on the results of color measurement in both the Hunter and CIE measurement systems. The effect of milk beverage temperature on color measurement results was the largest for skim milk and the least for 2% fat milk. This highlights the need for proper control of beverage serving temperature for sensory panel analysis of milk-based beverages with very low fat content and for control of milk temperature when doing objective color analysis for quality control in manufacture of milk-based beverages. The Hunter system of color measurement was more sensitive to differences in whiteness among milk-based beverages than the CIE system, whereas the CIE system was much more sensitive to differences in yellowness among milk-based beverages. There was little difference between the Hunter and CIE system in sensitivity to green/red color of milk-based beverages. In defining milk-based beverage product specifications for objective color measures for dairy product manufacturers, the viewer angle, color measurement system (CIE vs. Hunter), and sample measurement temperature should be specified along with type of illuminant.}, number={6}, journal={JOURNAL OF DAIRY SCIENCE}, author={Cheng, Ni and Barbano, David M. and Drake, Mary Anne}, year={2018}, month={Jun}, pages={4891–4905} }