Nancy Ma Wang, X., Ma, N., Bliss, D. F., Isler, G. W., & Becla, P. (2007). Combining static and rotating magnetic fields during modified vertical bridgman crystal growth. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 21(4), 736–743. https://doi.org/10.2514/1.28772 Yang, M., Ma, N., Bliss, D. F., & Bryant, G. G. (2007, August). Melt motion during liquid-encapsulated Czochralski crystal growth in steady and rotating magnetic fields. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, Vol. 28, pp. 768–776. https://doi.org/10.1016/j.ijheatfluidflow.2006.08.001 Wang, X., & Ma, N. (2007). Semiconductor crystal growth by the vertical Bridgman process with transverse rotating magnetic fields. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 129(2), 241–243. https://doi.org/10.1115/1.2352790 Wang, X., & Ma, N. (2006). Bridgman-Stockbarger growth of binary alloyed semiconductor crystals with steady magnetic fields. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 20(2), 313–319. https://doi.org/10.2514/1.15584 Wang, X., Ma, N., Bliss, D. F., Iseler, G. W., & Becla, P. (2006, January 25). Comparing modified vertical gradient freezing with rotating magnetic fields or with steady magnetic and electric fields. JOURNAL OF CRYSTAL GROWTH, Vol. 287, pp. 270–274. https://doi.org/10.1016/j.jcrysgro.2005.11.036 Ma, N., & Walker, J. S. (2006). Electromagnetic stirring in crystal growth processes. Fluid Dynamics & Materials Processing : FDMP, 2(2), 119–125. Wang, X., Ma, N., Bliss, D. F., Iseler, G. W., & Becla, P. (2006). Parametric study of modified vertical bridgman growth in a rotating magnetic field. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 20(3), 384–388. https://doi.org/10.2514/1.19572 Wang, X., Ma, N., Bliss, D. F., & Iseler, G. W. (2006). Solute segregation during modified vertical gradient freezing of alloyed compound semiconductor crystals with magnetic and electric fields. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 49(19-20), 3429–3438. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.008 Ma, N., & Walker, J. S. (2006). Strong-field electromagnetic stirring in the vertical gradient freeze process with a submerged heater. JOURNAL OF CRYSTAL GROWTH, 291(1), 249–257. https://doi.org/10.1016/j.jcrysgro.2006.02.041 Yang, M., & Ma, N. (2005). A computational study of natural convection in a liquid-encapsulated molten semiconductor with a horizontal magnetic field. International Journal of Heat and Fluid Flow, 26(5), 810–816. Wang, X., Ma, N., Bliss, D. F., & Iseler, G. W. (2005). A numerical investigation of dopant segregation by modified vertical gradient freezing with moderate magnetic and weak electric fields. International Journal of Engineering Science, 43(12-Nov), 908–924. Yang, M., & Ma, N. (2005). Free convection in a liquid-encapsulated molten semiconductor in a vertical magnetic field. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 48(19-20), 4010–4018. https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.019 LaPointe, S. J., Ma, N., & Mueller, D. W. (2005). Growth of binary alloyed semiconductor crystals by the vertical Bridgman-Stockbarger process with a strong magnetic field. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 127(3), 523–528. https://doi.org/10.1115/1.1899169 Yang, M., Ma, N. B., D. F., & Morton, J. L. (2005). Liquid-encapsulated Czochralski growth of doped gallium-antimonide semiconductor crystals using a strong steady magnetic field. Magnetohydrodynamics, 41(1), 73–86. Wang, X. H., & Ma, N. (2005). Numerical model for Bridgman-Stockbarger crystal growth with a magnetic field. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 19(3), 406–412. https://doi.org/10.2514/1.13307 Wang, X. H., Ma, N., Bliss, D. F., & Iseler, G. W. (2005). Semiconductor crystal growth by modified vertical gradient freezing with electromagnetic stirring. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, Vol. 19, pp. 95–100. https://doi.org/10.2514/1.10279 Wang, X.-H., Ma, N., Bliss, D. F., & Iseler, G. W. (2005). Semiconductor crystal growth by modified vertical gradient freezing with electromagnetic stirring. AIAA 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2005, 2005-0916(2005 Jan.). Holmes, A. M., Wang, X., Ma, N., Bliss, D. F., & Iseler, G. W. (2005). Vertical gradient freezing using submerged heater growth with rotation and with weak magnetic and electric fields. International Journal of Heat and Fluid Flow, 26(5), 792–800. Ma, N., Walker, J. S., & Witkowski, L. M. (2004). Combined effects of rotating magnetic field and rotating system on the thermocapillary instability in the floating zone crystal growth process. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 126(2), 230–235. https://doi.org/10.1115/1.1666883 Farrell, M. V., & Ma, N. (2004). Macrosegregation during alloyed semiconductor crystal growth in strong axial and transverse magnetic fields. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 47(14-16), 3047–3055. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.021 Wang, X., & Ma, N. (2004). Strong magnetic field asymptotic model for binary alloyed semiconductor crystal growth. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 18(4), 476–480. https://doi.org/10.2514/1.11905 Dust, J. C., & Ma, N. (2003). Macrosegregation during directional solidification of alloyed semiconductor crystals with a transverse magnetic field. AIAA Aerospace Sciences Meeting and Exhibit (41st: Reno, NV, 2003). (AIAA paper; no. 2003-1310). Morton, J. L., Ma, N., Bliss, D. F., & Bryant, G. G. (2003, March). Magnetic field effects during liquid-encapsulated Czochralski growth of doped photonic semiconductor crystals. JOURNAL OF CRYSTAL GROWTH, Vol. 250, pp. 174–182. https://doi.org/10.1016/S0022-0248(02)02261-3 Kuniholm, J. F., & Ma, N. (2003). Natural convection in a liquid-encapsulated molten semiconductor with a steady magnetic field. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 24(1), 130–136. https://doi.org/10.1016/S0142-727X(02)00205-9 Ma, N. (2003). Solutal convection during growth of alloyed semiconductor crystals in a magnetic field. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 17(1), 77–81. https://doi.org/10.2514/2.6736 Ma, N. W., J. S., & Witkowski, L. M. (2003). Thermocapillary instability with a rotating magnetic field and system rotation. ASME Proceedings of the International Mechanical Engineering Congress and Exposition, Washington D. C., 297–303. Washington, DC: ASME. Ma, N., Bliss, D. F., & Iseler, G. W. (2003). Vertical gradient freezing of doped gallium-antimonide semiconductor crystals using submerged heater growth and electromagnetic stirring. JOURNAL OF CRYSTAL GROWTH, 259(1-2), 26–35. https://doi.org/10.1016/S0022-0248(03)01575-6 Walker, J. S., & Ma, N. (2002). Convective mass transport during bulk growth of semiconductor crystals with steady magnetic fields. Annual Review of Heat Transfer, 12(2002), 223–263. Farrell, M. V., & Ma, N. (2002). Coupling of buoyant convections in boron oxide and a molten semiconductor in a vertical magnetic field. Journal of Heat Transfer, 124(4), 643–649. https://doi.org/10.1115/1.1473141 Morton, J. L., Ma, N., Bliss, D. F., & Bryant, G. G. (2002). Dopant segregation during liquid-encapsulated Czochralski crystal growth in a steady axial magnetic field. JOURNAL OF CRYSTAL GROWTH, 242(3-4), 471–485. https://doi.org/10.1016/S0022-0248(02)01425-2 Ma, N. (2002). Models of mass transport during microgravity crystal growth of alloyed semiconductor crystals in a magnetic field. NASA Microgravity Materials Science Conference proceedings, NASA/CP-2003-212339, 380–382. Huntsville, Ala.: NASA. Ma, N. (2002). Solutal convection during melt growth of alloyed semiconductor crystals in a steady magnetic field. AIAA Aerospace Sciences Meeting and Exhibit (40th: Reno, NV, 2002). (AIAA paper; no. 2002-1113). Morton, J. L., Ma, N., Bliss, D. F., & Bryant, G. G. (2001). Diffusion-controlled dopant transport during magnetically-stabilized liquid-encapsulated Czochralski growth of compound semiconductor crystals. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 123(4), 893–898. https://doi.org/10.1115/1.1411968 Hockenhull, T. E., & Ma, N. (2000). Dopant transport during semiconductor crystal growth in space with a steady magnetic field. Magnetohydrodynamics, 36(3), 289–296.