@article{hackman_cook_strahm_carter_woodley_garcia_albaugh_rubilar_campoe_2024, title={Pinus taeda carryover phosphorus availability on the lower Atlantic Coastal Plain}, volume={555}, ISSN={["1872-7042"]}, DOI={10.1016/j.foreco.2024.121701}, abstractNote={Phosphorus (P) fertilizer that remains in the soil after harvest and into the subsequent rotation is referred to as carryover P. Carryover P is not well understood in loblolly pine (P. taeda) silviculture, especially on highly P responsive sites, where this effect could potentially have the greatest benefit to land managers. Our study aims to determine the duration of the P carryover effect and the magnitude of response to soil P as it relates to previously applied P fertilizer rates from the previous rotation. To address this knowledge gap, we studied two highly weathered sites on the lower Atlantic coastal plain: a somewhat poorly drained Spodosol and a poorly drained Alfisol over three years from pre- to post-harvest. Two years post planting, carryover fertilizer treatments resulted in a 13% increase in height for the 121 kg P ha-1, a 15% for the 81 kg P ha-1, and a 17% increase for the fertilized 40 + 45 kg P ha-1 treatments compared to the control for the Alfisol. Spodosols appeared to respond to any additional fertilization compared to the control group regardless of rate. Importantly, we found that O horizon mass and P content from the first rotation, approximately seven years before harvest, exhibited a positive linear relationship with one-year-old heights in the Spodosol and one- and two-year-old heights in the Alfisol. These findings shed light on the importance of the O horizon characteristics and its potential as an indicator for tree growth in subsequent rotations.}, journal={FOREST ECOLOGY AND MANAGEMENT}, publisher={Elsevier BV}, author={Hackman, Jacob and Cook, Rachel and Strahm, Brian and Carter, David and Woodley, Alex and Garcia, Kevin and Albaugh, Timothy and Rubilar, Rafael and Campoe, Otavio}, year={2024}, month={Mar} } @article{cook_fox_allen_cohrs_ribas-costa_trlica_ricker_carter_rubilar_campoe_et al._2024, title={Forest soil classification for intensive pine plantation management: "Site Productivity Optimization for Trees" system}, volume={556}, ISSN={["1872-7042"]}, DOI={10.1016/j.foreco.2024.121732}, abstractNote={Forest productivity and response to silvicultural treatments are dependent on inherent site resource availability and limitations. Trees have deeper rooting profiles than agronomic crops, so evaluating the impacts of soils, geology, and physiographic province on forest productivity can help guide silvicultural management decisions in southern pine plantations. Here, we describe the Forest Productivity Cooperative’s “Site Productivity Optimization for Trees” (SPOT) system which includes: texture, depth to increase in clay content, drainage class, soil modifiers (i.e., surface attributes, mineralogy, and additional limitations such as root restrictions), geologic formations, and physiographic province. We quantified the total area for each SPOT code in the native range of loblolly pine (Pinus taeda L.), the region’s most commercially important species, and used a remotely-sensed layer to quantify SPOT code areas in managed southern pine (approximately 14 million ha). The most common SPOT code in the native range is also the most planted, a B2WekoGgPD (fine loamy, shallow depth to increase in clay, well-drained, eroded, kaolinitic, granitic, Piedmont soil), spanning 1.1 million ha total, but only 12% in managed southern pine. However, the SPOT code with the greatest percentage of managed southern pine (61%; a D4PoioAmAF, spodic, deep to increase in clay, siliceous, middle Atlantic Coastal Plain, Flatwoods soil) was the 20th most common in the native range with 474,662 ha. We used machine learning and data from decades of “Regionwide” trials to assess the variable importance of SPOT constituents, climate, planting year, and N rate on site index (base age 25 years) and found that planting year was the most important variable, showing an increase of 17 cm site index per year since 1970, followed by maximum vapor pressure deficit, and precipitation. Geology was the top-ranking SPOT variable to explain site index followed by physiographic province. The Regionwide trials represent 72 unique SPOT codes (out of over 10,000 possible in the pine plantations) and approximately one million ha (or about 7% of all soils identified as supporting managed pine). To extrapolate site index values outside of the unique soil and geologic conditions empirically represented, we created a predictive model with an R2 of 0.79 and an RMSE of 1.38 m from SPOT codes alone. With this extrapolation, the Regionwide data predicts 10.5 million ha, or 74%, of all soils under loblolly pine management in its native range. Overall, this system will allow managers to assess their current site productivity, and recommend silvicultural treatments, thus, providing a framework to optimize forest productivity in pine plantations in the southeastern US.}, journal={FOREST ECOLOGY AND MANAGEMENT}, author={Cook, Rachel and Fox, Thomas R. and Allen, Howard Lee and Cohrs, Chris W. and Ribas-Costa, Vicent and Trlica, Andrew and Ricker, Matthew and Carter, David R. and Rubilar, Rafael and Campoe, Otavio and et al.}, year={2024}, month={Mar} } @article{rubilar_bozo_albaugh_cook_campoe_carter_allen_alvarez_pincheira_zapata_2023, title={Rotation-age effects of subsoiling, fertilization, and weed control on radiata pine growth at sites with contrasting soil physical, nutrient, and water limitations}, volume={544}, ISSN={["1872-7042"]}, DOI={10.1016/j.foreco.2023.121213}, abstractNote={Although short- and medium-term responses to early silvicultural treatments have been documented, few studies show productivity gains or losses throughout a rotation across a range of soil types and resource availability. We evaluated the rotation length productivity responses of radiata pine to subsoiling, fertilization, and weed control in dry sand (DS), red clay (RC), and recent volcanic ash (RV) soils representing a gradient of physical, nutrient, and water limitations. Stands were planted in 2000 in a split-plot factorial design, with soil preparation (subsoiling vs. shovel planting) as the main plot and fertilization at planting (B only vs. NPKB) and weed control (none vs. 2-year banded application) as factorial randomized treatment plots within the main plots. Annual diameter at breast height, height, survival, and cumulative volume responses were measured. The rotation-age results for cumulative volume showed that early gains from weed control were maintained through at least 15 years of age. At rotation age, weed control increased the cumulative volume at the DS site (56 m3/ha, 20% gain), and the response over time was maintained at the RC site (28 m3/ha, 8% gain), whereas the volume was reduced at the RV site (-36 m3/ha, 7% loss). Fertilization resulted in the greatest response at the RC site (29 m3/ha, 8% gain); there were small responses at the DS site (5 m3/ha, 2% gain) and negative responses at the RV site (-18 m3/ha, 4% loss). Interestingly, subsoiling resulted in null or negative responses at all sites, and negative effects increased over time, with volume responses ranging from −4 m3/ha (1% loss) and −27 m3/ha (7% loss) at the DS and RC sites, respectively, to −116 m3/ha (21% loss) at the RV site. Carrying capacity was reached at mid-rotation at the RV site and resulted in negative treatment effects at rotation age, suggesting the need for thinning or a younger harvest age at this site. Given the negative or null effects of soil preparation, a better understanding is needed for how this silvicultural treatment is affected by soil type and soil strength.}, journal={FOREST ECOLOGY AND MANAGEMENT}, author={Rubilar, Rafael and Bozo, Daniel and Albaugh, Timothy and Cook, Rachel and Campoe, Otavio and Carter, David and Allen, H. Lee and Alvarez, Jose and Pincheira, Matias and Zapata, Alvaro}, year={2023}, month={Sep} }