@article{lee_hossain_jamalzadegan_liu_wang_saville_shymanovich_paul_rotenberg_whitfield_et al._2023, title={Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring}, volume={9}, ISSN={["2375-2548"]}, DOI={10.1126/sciadv.ade2232}, abstractNote={Wearable plant sensors hold tremendous potential for smart agriculture. We report a lower leaf surface-attached multimodal wearable sensor for continuous monitoring of plant physiology by tracking both biochemical and biophysical signals of the plant and its microenvironment. Sensors for detecting volatile organic compounds (VOCs), temperature, and humidity are integrated into a single platform. The abaxial leaf attachment position is selected on the basis of the stomata density to improve the sensor signal strength. This versatile platform enables various stress monitoring applications, ranging from tracking plant water loss to early detection of plant pathogens. A machine learning model was also developed to analyze multichannel sensor data for quantitative detection of tomato spotted wilt virus as early as 4 days after inoculation. The model also evaluates different sensor combinations for early disease detection and predicts that minimally three sensors are required including the VOC sensors.}, number={15}, journal={SCIENCE ADVANCES}, author={Lee, Giwon and Hossain, Oindrila and Jamalzadegan, Sina and Liu, Yuxuan and Wang, Hongyu and Saville, Amanda C. and Shymanovich, Tatsiana and Paul, Rajesh and Rotenberg, Dorith and Whitfield, Anna E. and et al.}, year={2023}, month={Apr} } @article{wang_pirzada_xie_barbieri_hossain_opperman_pal_wei_parsons_khan_2022, title={Creating hierarchically porous banana paper-metal organic framework (MOF) composites with multifunctionality}, volume={28}, ISSN={["2352-9407"]}, url={https://doi.org/10.1016/j.apmt.2022.101517}, DOI={10.1016/j.apmt.2022.101517}, abstractNote={We report a robust approach to integrate metal-organic frameworks (MOF) via vapor phase synthesis on a cost-effective and mechanically durable fibrous banana paper (BP) substrate developed from lignocellulosic biomass. The unique hollow fibrous structure of BP combined with the methodology used produces MOF-fiber composites with uniform MOF distribution and enhanced functionalities, with minimal use of organic solvents. The BP-MOF composites demonstrate a high surface area of 552 m2/g and uniform surface growth of MOF on them. Mechanical strength and bending flexibility of the substrate is well retained after the MOF growth, while the hollow tubular nature and hierarchical porosity of the BP facilitate gas diffusion. The BP-MOF composites demonstrate strong antibacterial activity with 99.2% of E.coli destroyed within the first hour of incubation. Preliminary studies with smartphone-based volatile organic compound (VOC) sensor show enhanced 1-octen-3-ol vapor absorption on BP-MOF, indicating its potential for VOC capture and sensing. We believe that the sustainable nature and flexibility of the lignocellulosic BP substrate taken together with uniform growth of MOF on the hierarchically porous BP impart impressive attributes to these composites, which can be explored in diverse applications.}, journal={APPLIED MATERIALS TODAY}, publisher={Elsevier BV}, author={Wang, Siyao and Pirzada, Tahira and Xie, Wenyi and Barbieri, Eduardo and Hossain, Oindrila and Opperman, Charles H. and Pal, Lokendra and Wei, Qingshan and Parsons, Gregory N. and Khan, Saad A.}, year={2022}, month={Aug} } @misc{silva_tomlinson_onkokesung_sommer_mrisho_legg_adams_gutierrez-vazquez_howard_laverick_et al._2021, title={Plant pest surveillance: from satellites to molecules}, volume={5}, ISSN={["2397-8562"]}, DOI={10.1042/ETLS20200300}, abstractNote={Plant pests and diseases impact both food security and natural ecosystems, and the impact has been accelerated in recent years due to several confounding factors. The globalisation of trade has moved pests out of natural ranges, creating damaging epidemics in new regions. Climate change has extended the range of pests and the pathogens they vector. Resistance to agrochemicals has made pathogens, pests, and weeds more difficult to control. Early detection is critical to achieve effective control, both from a biosecurity as well as an endemic pest perspective. Molecular diagnostics has revolutionised our ability to identify pests and diseases over the past two decades, but more recent technological innovations are enabling us to achieve better pest surveillance. In this review, we will explore the different technologies that are enabling this advancing capability and discuss the drivers that will shape its future deployment.}, number={2}, journal={EMERGING TOPICS IN LIFE SCIENCES}, author={Silva, Goncalo and Tomlinson, Jenny and Onkokesung, Nawaporn and Sommer, Sarah and Mrisho, Latifa and Legg, James and Adams, Ian P. and Gutierrez-Vazquez, Yaiza and Howard, Thomas P. and Laverick, Alex and et al.}, year={2021}, pages={275–287} } @article{li_liu_hossain_paul_yao_wu_ristaino_zhu_wei_2021, title={Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor}, volume={4}, ISSN={["2590-2385"]}, DOI={10.1016/j.matt.2021.06.009}, abstractNote={Determination of plant stresses such as infections by plant pathogens is currently dependent on time-consuming and complicated analytical technologies. Here, we report a leaf-attachable chemiresistive sensor array for real-time fingerprinting of volatile organic compounds (VOCs) that permits noninvasive and early diagnosis of plant diseases, such as late blight caused by Phytophthora infestans. The imperceptible sensor patch integrates an array of graphene-based sensing materials and flexible silver nanowire electrodes on a kirigami-inspired stretchable substrate, which can minimize strain interference. The sensor patch has been mounted on live tomato plants to profile key plant volatiles at low-ppm concentrations with fast response (<20 s). The multiplexed sensor array allows for accurate detection and classification of 13 individual plant volatiles with >97% classification accuracy. The wearable sensor patch was used to diagnose tomato late blight as early as 4 days post inoculation and abiotic stresses such as mechanical damage within 1 h.}, number={7}, journal={MATTER}, author={Li, Zheng and Liu, Yuxuan and Hossain, Oindrila and Paul, Rajesh and Yao, Shanshan and Wu, Shuang and Ristaino, Jean B. and Zhu, Yong and Wei, Qingshan}, year={2021}, month={Jul}, pages={2553–2570} } @misc{tholl_hossain_weinhold_rose_wei_2021, title={Trends and applications in plant volatile sampling and analysis}, volume={106}, ISSN={["1365-313X"]}, DOI={10.1111/tpj.15176}, abstractNote={SUMMARY}, number={2}, journal={PLANT JOURNAL}, author={Tholl, Dorothea and Hossain, Oindrila and Weinhold, Alexander and Rose, Ursula S. R. and Wei, Qingshan}, year={2021}, month={Apr}, pages={314–325} }