@article{toomer_maharjan_harding_vu_malheiros_mian_joseph_read_oviedo-rondon_anderson_2024, title={Effects of full-fat high-oleic soybean meal in layer diets on performance, egg quality and chemical composition}, volume={103}, ISSN={["1525-3171"]}, url={https://doi.org/10.1016/j.psj.2024.104074}, DOI={10.1016/j.psj.2024.104074}, abstractNote={The utilization of full-fat high-oleic soybean meal in layer diets could lead to value-added poultry products. To test this idea, 336 hens were randomly assigned to 4 isonitrogenous (18.5% CP) and isocaloric (2,927 kcal/kg) formulated diets and fed the following diets for eight weeks: conventional control solvent-extracted defatted soybean meal (CON); extruded-expelled defatted soybean meal (EENO); full fat normal-oleic soybean meal (FFNO); or full fat high-oleic soybean meal (FFHO). Body weights (BW) were collected at week 0 and week 8. Eggs were collected daily, and the totals counted each week. Feed consumption was measured weekly, and egg quality was measured bi-weekly. Eggs were collected at wk 0 and wk 8 for fatty acid analysis. There were no significant treatment differences in any of the production parameters measured, BW, feed consumption, feed conversion ratio or egg production (P > 0.05). Eggshell strength was significantly greater in eggs produced from the EENO group as compared to the control (P < 0.01), while egg yolk color was significantly darker in eggs of the control and EENO treatment groups relative to the FFNO and FFHO treatments (P < 0.0001). Eggs produced by hens fed the FFHO diet had a 52% increase in monounsaturated n-9 oleic acid content (P < 0.0001) and reduced palmitic (P < 0.01) and stearic (P < 0.0001) saturated fatty acid levels as compared to the conventional controls. These results validate the utilization of FFHO as a value-added poultry feed ingredient to enrich the eggs and/or poultry meat produced.}, number={10}, journal={POULTRY SCIENCE}, author={Toomer, Ondulla T. and Maharjan, Pramir and Harding, Kari L and Vu, Thien Chuong and Malheiros, Ramon and Mian, Rouf and Joseph, Michael and Read, Quentin D. and Oviedo-Rondon, Edgar Orlando and Anderson, Kenneth E.}, year={2024}, month={Oct} } @article{ali_joseph_alfaro-wisaquillo_quintana-ospina_patino_vu_dean_fallen_mian_taliercio_et al._2024, title={Effects of high oleic full-fat soybean meal on broiler live performance, carcass and parts yield, and fatty acid composition of breast fillets}, volume={103}, ISSN={["1525-3171"]}, DOI={10.1016/j.psj.2023.103399}, abstractNote={The effects of high oleic oil full-fat (HO-FF) soybean meal (SBM) on broiler meat quality could lead to value-added food products. This experiment evaluated the effects of dietary normal oleic extruded expelled (NO-EE), normal oleic full-fat (NO-FF), or HO-FF SBM on live performance, carcass and parts yield, and breast fatty acid composition. Diets were formulated to be isoenergetic and isonitrogenous. A total of 540 Ross-708 male broilers were raised on floor pens with 18 broilers/pen and ten replicates/treatment. Data were analyzed in a completely randomized design. Chickens were fed with a starter (0 – 14 d), grower (15 – 35 d), or a finisher diet (36 – 47 d) up to 47 d. Chickens were weighed at 7, 14, 35, and 47 d. At 48 d, four broilers per pen were processed. Breast samples were collected and evaluated for quality and fatty acid content. Broilers fed diets with NO-EE were heavier (P < 0.05) than chickens fed diets with full-fat SBM (NO-FF and HO-FF) at d 7, 14, 35 while feed conversion ratio (FCR) of NO-EE was best (P < 0.05) at 7 d and 47 d. Carcass yield was also higher for broilers fed NO-EE than the other treatments. Diet did not affect parts yield, breast meat color, cooking, drip loss, white stripping, or SM quality parameters. More breast fillets without wooden breast (score 1) were observed (P < 0.05) for NO-FF than the other two treatments. The breast meat fatty acid profile (g fatty acid/ 100 g of all fatty acids) was significantly affected (P < 0.001) by diet. Broilers fed the HO-FF SBM diet had 54 to 86% more oleic acid, 72.5% to 2.2 times less linoleic acid, and reduced stearic and palmitic acid levels in the breast meat than NO-FF and NO-EE. In conclusion, feeding HO-FF to broilers enriched the oleic acid content of their breast meat while reducing the saturated fatty acid content relative to the NO-FF and NO-EE treatment groups.}, number={3}, journal={POULTRY SCIENCE}, author={Ali, Muhammad and Joseph, Michael and Alfaro-Wisaquillo, Maria Camila and Quintana-Ospina, Gustavo Adolfo and Patino, Danny and Vu, Thien and Dean, Lisa L. and Fallen, Ben and Mian, Rouf and Taliercio, Earl and et al.}, year={2024}, month={Mar} } @misc{toomer_oviedo-rondon_ali_joseph_vu_fallen_mian_2024, title={Full-Fat Soybean Meals as an Alternative Poultry Feed Ingredient-Feed Processing Methods and Utilization-Review and Perspective}, volume={14}, ISSN={["2076-2615"]}, DOI={10.3390/ani14162366}, abstractNote={On a global scale, the poultry industry expands its wings in terms of meat and egg production to the masses. However, this industry itself requires a sustainable and permanent supply of different inputs, one of which is poultry feed and nutrition. Soybean is a versatile protein that is offered to poultry in different inclusion rates in commercial diets after being processed using various thermal and mechanical processing methods. Conventional commercial soybean meal is usually prepared by the extraction of oil from whole soybeans using solvents, producing a meal that has approximately 1% crude fat. Without oil extraction, full-fat soybean (FFSBM) is produced, and it is an excellent source of dietary energy and protein for poultry with a nutritional profile of 38-40% protein and 18-20% crude fat, on average. FFSBM has less crude protein (CP) than solvent-extracted soybean meal (SE SBM) but higher metabolizable energy due to higher fat content. Alternatively, extruded expeller processing produces defatted soybean meal containing approximately 6-7% crude fat. Studies have demonstrated that FFSBM can be used in poultry diets to improve poultry nutrition, performance, and quality of the poultry meat and eggs produced. This review aims to evaluate the nutrition and use of meals prepared from conventional and high-oleic soybeans using various feed processing methods.}, number={16}, journal={ANIMALS}, author={Toomer, Ondulla T. and Oviedo-Rondon, Edgar Orlando and Ali, Muhammad and Joseph, Michael and Vu, Thien and Fallen, Ben and Mian, Rouf}, year={2024}, month={Aug} } @article{patino_toomer_vu_oviedo-rondon_mian_frinsko_hall_kelly_mann_joseph_2024, title={Influence of extruded soybean meal with different fat contents and varying oleic acid content on floating fish feed quality and composition}, volume={317}, ISSN={["1873-2216"]}, DOI={10.1016/j.anifeedsci.2024.116088}, abstractNote={Soybean meal (SBM) is the most widely used source of high-quality plant protein within the feed industry. Raw soybeans are conventionally processed to reduce antinutritional factors, enhance protein bioavailability and improve the overall quality of the final feed product. New high-oleic (HO) cultivars with enhanced unsaturated fatty acids are being utilized in the production of HO SBM for use in the animal feed industry. However, no studies to date have examined the impact of HO SBM on feed formulation and processing of aquaculture feeds. Therefore, we aimed to determine the quality of feed for juvenile domesticated striped bass (Morone saxatilis) using SBM prepared from HO or normal-oleic (NO) soybeans and extrusion-expeller processing. The following four soybean meals were used in our experimental diets: solvent-extracted defatted normal oleic (SENO), full-fat normal oleic (FFNO), extruded-expelled defatted normal oleic (EENO), or full-fat high oleic (FFHO). These meals replaced half of the fishmeal (FM) normally included in a nutritionally complete marine finfish diet. Physico-chemical feed variables and chemical composition were determined during feed production. Data were analyzed using one-way ANOVA and means were separated using Tukey's t-test. The specific mechanical energy of the diet was reduced with the addition of full-fat SBMs during the extrusion process. All finished fish diets were of similar high quality with high pellet durability index and protein content (P > 0.05). This suggested that using different types SBM, including high oleic, to replace 50 % of the fish meal in a floating feed for juvenile domesticated striped bass does not adversely affect the feed quality or nutritional content.}, journal={ANIMAL FEED SCIENCE AND TECHNOLOGY}, author={Patino, Danny B. and Toomer, Ondulla T. and Vu, Thien C. and Oviedo-Rondon, Edgar O. and Mian, Rouf and Frinsko, Mike and Hall, Steven and Kelly, Ryan and Mann, Jason and Joseph, Michael}, year={2024}, month={Nov} } @article{toomer_redhead_vu_santos_malheiros_proszkowiec-weglarz_2024, title={The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis}, volume={103}, ISSN={["1525-3171"]}, DOI={10.1016/j.psj.2024.104159}, abstractNote={The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: (1) CON-control diet without SE, (2) PS-PS diet without SE, (3) CONSE-control diet with SE, (4) PSSE-PS diet with SE. On day 3, birds from CONSE and PSSE treatments were inoculated with 4.2×109 CFU/ml SE. At termination (4wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of ASVs (amplicon sequence variants) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.}, number={11}, journal={POULTRY SCIENCE}, author={Toomer, Ondulla T. and Redhead, Adam K. and Vu, Thien C. and Santos, Fernanda and Malheiros, Ramon and Proszkowiec-Weglarz, Monika}, year={2024}, month={Nov} } @misc{toomer_oviedo_ali_patino_joseph_frinsko_vu_maharjan_fallen_mian_2023, title={Current Agronomic Practices, Harvest & Post-Harvest Processing of Soybeans (Glycine max)-A Review}, volume={13}, ISSN={["2073-4395"]}, DOI={10.3390/agronomy13020427}, abstractNote={Globally, soybeans are grown to meet the needs for animal and human nutrition, oil extraction, and use in multiple industrial applications. Decades of soybean research, innovative farming methods, and the use of higher yielding resistant seed varieties have led to increased crop yields. Globally, soybean producers have utilized enhanced processing methods to produce nutritious high-quality meal and extracted oil for use in animal feed and within the food industry. Soybeans contain highly digestible proteins and are processed using various mechanical and chemical techniques to produce high quality animal feed ingredients. Defatted soybean meal (DSM) is usually prepared by the solvent extraction process of soybeans, whereby almost all oil content is removed. When oil is not extracted, full-fat soybean meal (FFSBM) is created. This form provides an excellent source of dietary energy by retaining the lipid component and is very useful in animal feeds by reducing the need for adding exogeneous lipids. However, some anti-nutritional factors (ANF) are present in FFSBM if not properly heat treated before inclusion in the finished feed. These ANF adversely affect the internal organ function and overall growth performance of the animal. Among these ANF, protease inhibitors are most important, but can be readily destroyed with optimal thermal processing. However, if the process protocols are not followed precisely, excessive heat treatment may occur, resulting in both reduced protein quality and amino acid bioavailability in the meal. Conversely, insufficient heat treatment may result in the retention of some ANF in the meal. Thermally resistant ANF can be greatly reduced in the bean and meal when dietary enzyme supplementation is included in the finished feed. This approach is cost-effective and most commonly utilized commercially. After processing, the soybean meal quality is often measured using in vitro methods performed at commercial analytical laboratories to assess the nitrogen solubility index (NSI), protein dispersibility index (PDI), urease activity (UA), and protein solubility in potassium hydroxide. Once properly processed, FFSBM or DSM can be utilized optimally in the diets of poultry and aquaculture to enhance the economic viability, animal nutrition, production performance, and the quality and nutritional value of the meat and/or eggs produced.}, number={2}, journal={AGRONOMY-BASEL}, author={Toomer, Ondulla T. and Oviedo, Edgar O. and Ali, Muhammad and Patino, Danny and Joseph, Michael and Frinsko, Mike and Vu, Thien and Maharjan, Pramir and Fallen, Ben and Mian, Rouf}, year={2023}, month={Feb} } @article{maharjan_rahimi_harding_vu_malheiros_oviedo-rondon_mian_joseph_dean_anderson_et al._2023, title={Effects of full-fat high-oleic soybean meal in layer diets on nutrient digestibility and egg quality parameters of a white laying hen strain}, volume={102}, ISSN={["1525-3171"]}, url={https://doi.org/10.1016/j.psj.2023.102486}, DOI={10.1016/j.psj.2023.102486}, abstractNote={This study was conducted to understand the impact of including full fat high-oleic soybean meal in layer hen diets on nutrient digestibility and added nutritional value in eggs. Forty-eight layers (∼36 wk old) were randomly assigned to one of 4 isonitrogenous (18.5% crude protein) treatment diets with 12 replicate birds per treatment in a 3-wk study. Treatments were 1) solvent extracted defatted soybean meal + corn diet, 2) dry extruded defatted soybean meal + corn, 3) full-fat soybean meal + corn, 4) high-oleic full-fat soybean meal + corn diet. Apparent ileal digestibility of crude fat (CF) and crude protein (CP) were determined using celite (∼2%) as an indigestible marker. Tibia strength and egg quality parameters (egg weight, shell strength, Haugh unit, shell color, and yolk color) were recorded during the study. Fatty acid profiles, including the monounsaturated fatty acid, oleic acid (C18:1, cis), in eggs and adipogenic tissue (liver, muscle, and fat pad) were measured using gas chromatography (GC-FID). Digestibility values of CF ranged from 71 to 84% and CP varied from 67 to 72% for treatment diets, with treatment mean values being no different (P > 0.05) between treatment diets. No differences between treatment diets in tibia strength or egg quality parameters (egg weight, shell strength, and Haugh unit) were observed (P > 0.05) except for yolk color. Similarly, there were no differences in the total lipids in egg yolk (P > 0.05) between treatment diets. However, oleic acid percentage of total lipid in egg and tissue was significantly higher (P < 0.001) in hens given the high-oleic full-fat soybean meal diet than in other treatment groups. No difference was observed in oleic acid percentage of total lipid in egg between the other 3 treatment diets (P > 0.05). Overall, the results exhibited that the eggs and tissue of layer hens fed the full-fat high-oleic acid soybean meal diet were higher in oleic acid while the CF and CP digestibility remained similar to the digestibility of the other diets.}, number={4}, journal={POULTRY SCIENCE}, author={Maharjan, Pramir and Rahimi, Amin and Harding, Kari L and Vu, Thien Chuong and Malheiros, Ramon and Oviedo-Rondon, Edgar O. and Mian, Rouf and Joseph, Michael and Dean, Lisa and Anderson, Kenneth E. and et al.}, year={2023}, month={Apr} } @article{ali_joseph_alfaro-wisaquillo_quintana-ospina_penuela-sierra_patino_vu_mian_toomer_oviedo-rondon_2024, title={Influence of extruded soybean meal with varying fat and oleic acid content on nitrogen-corrected apparent metabolizable energy in broilers}, volume={103}, ISSN={["1525-3171"]}, DOI={10.1016/j.psj.2023.103408}, abstractNote={High oleic (HO) soybeans may serve as a value-added feed ingredient; providing amino acids and estimating their dietary energy value for broilers is essential. In this study, we determined the apparent metabolizable energy (AME), AME corrected for zero nitrogen retention (AMEn), digestibility, and nitrogen (N) retention of HO full-fat (HO-FF) soybean as compared to solvent-extracted soybean meal (SE-SBM), normal oleic full-fat (NO-FF) and extruded expeller (NO-EE) soybean. A total of 240 Ross-708 male broilers were selected, with eight replicates per treatment and six chicks per cage. The AME and AMEn were estimated using the difference method with a 30% inclusion of test ingredients using a corn-soy reference diet with partial and total excreta collection. The index method with partial excreta collection used titanium dioxide as an inert marker. The same starter diet was provided for all birds for 14 days, followed by the reference and assay diets for the next six adaptation days. Total excreta was collected twice a day for three days. The AME and AMEn values determined for the HO-FF and NO-FF were higher (P < 0.001) than the NO-EE and SE-SBM. The AME of SE-SBM and NO-EE were similar with both methods, but the AMEn of SE-SBM was lower than the NO-EE only with the partial collection method. The agreement between AME and AMEn values determined by partial and total excreta collection analysis was 98%. Data from the total excreta collection method yielded higher AME and AMEn values (P < 0.001) than those from the partial collection method. In summary, HO-FF and NO-FF soybean meals had similar AME and AMEn values. The HO-FF soybean had 39 and 24% higher AME and AMEn than SE-SBM. Hence, high oleic full-fat soybean meal could serve as a valuable alternative feed ingredient to conventional SE-SBM meals in broiler diets, providing additional energy while providing amino acids and more oleic acid to enrich poultry meat products.}, number={3}, journal={POULTRY SCIENCE}, author={Ali, Muhammad and Joseph, Michael and Alfaro-Wisaquillo, Maria Camila and Quintana-Ospina, Gustavo Adolfo and Penuela-Sierra, Lina -Maria and Patino, Danny and Vu, Thien and Mian, Rouf and Toomer, Ondula and Oviedo-Rondon, Edgar Orlando}, year={2024}, month={Mar} } @article{ali_joseph_alfaro-wisaquillo_quintana-ospina_patino_penuela-sierra_vu_mian_taliercio_toomer_et al._2023, title={Standardized ileal amino acid digestibility of high-oleic full-fat soybean meal in broilers}, volume={102}, ISSN={["1525-3171"]}, DOI={10.1016/j.psj.2023.103152}, abstractNote={High-oleic (HO) soybean may serve as a value-added feed ingredient to enrich poultry meat due to its fatty acid content. However, the amino acid (AA) nutrient digestibility of soybean meal (SBM) made from these soybeans has yet to be determined. The objective of this study was to determine apparent ileal AA digestibility (AID) and standardized ileal AA digestibility (SID) of high-oleic full-fat (HO-FF) SBM compared to normal oleic full-fat (NO-FF), normal oleic extruded expeller (NO-EE), and solvent-extracted SBM (SE-SBM) in broilers. A nitrogen-free basal diet (NFD) was fed to 1 treatment group with 10 chicks/cage to determine basal endogenous losses (BEL). Titanium dioxide was used as an inert marker. The test diets contained 57.5% of the basal NFD and 42.5% of 1 of the 4 soybean sources. A total of 272 Ross-708 male broilers were placed in 40 battery cages with 5 treatments and 8 replicates per treatment. A common starter diet was provided to all the chickens for 14 d. Experimental diets were provided as a mash for 9 d before sample collection. Chickens were euthanized with CO2 on d 23, and contents of the distal ileum were collected, frozen, and freeze-dried. The BEL were similar to the values found in the literature. At d 23, broilers fed the SE-SBM had the highest body weight gain and best FCR compared to chickens fed the HO-FF and NO-FF treatments (P < 0.001). Broilers fed the SE-SBM and NO-EE experimental diets had (P < 0.001) higher apparent ileal AA digestibility and AA SID than broilers fed the HO-FF and NO-FF treatments. In conclusion, the SID of AA from HO-FF is similar to the digestibilities of other full-fat soybeans found in the literature and is lower than that of NO-EE and SE-SBM.}, number={12}, journal={POULTRY SCIENCE}, author={Ali, Muhammad and Joseph, Michael and Alfaro-Wisaquillo, Maria Camila and Quintana-Ospina, Gustavo Adolfo and Patino, Danny and Penuela-Sierra, Lina-Maria and Vu, Thien and Mian, Rouf and Taliercio, Earl and Toomer, Ondulla and et al.}, year={2023}, month={Dec} } @article{toomer_vu_sanders_redhead_malheiros_anderson_2021, title={Feeding Laying Hens a Diet Containing High-Oleic Peanuts or Oleic Acid Enriches Yolk Color and Beta-Carotene While Reducing the Saturated Fatty Acid Content in Eggs}, volume={11}, ISSN={["2077-0472"]}, DOI={10.3390/agriculture11080771}, abstractNote={We investigated the dietary effects of high-oleic peanuts (HOPN) or oleic fatty acids (OA) on older production hen performance, egg mass and quality, and lipid composition. A total of 99 laying hens were divided between three treatments and fed ad libitum for 8 weeks: (1) Conventional diet; (2) HOPN diet; (3) OA diet. Body weight (BW) was measured at weeks 1 and 8, and feed, egg weights (EW), and egg quality parameters were collected. Data was analyzed by analysis of variance at p < 0.05 significance level. There were no treatment differences in 8 week BW, feed conversion ratio, or average weekly egg quality parameters. The 8 week average EW of eggs from the HOPN group had reduced EW relative to the other treatment groups (p = 0.0004). The 8-week average yolk color score (p < 0.0001) was greater in eggs from the HOPN group relative to the other treatments. Overall, the β-carotene (p < 0.006) and OA content (p < 0.0001) was greater in eggs from the HOPN group, with reduced saturated fats in eggs from the HOPN group relative to the other treatments. These results suggest that HOPN and/or OA may be a useful layer feed ingredient to enrich eggs, while significantly reducing egg size in older production hens.}, number={8}, journal={AGRICULTURE-BASEL}, author={Toomer, Ondulla T. and Vu, Thien Chuong and Sanders, Elliot and Redhead, Adam Karl and Malheiros, Ramon and Anderson, Kenneth E.}, year={2021}, month={Aug} } @article{redhead_azman_nasaruddin_vu_santos_malheiros_hussin_toomer_2022, title={Peanut Skins as a Natural Antimicrobial Feed Additive To Reduce the Transmission of Salmonella in Poultry Meat Produced for Human Consumption}, volume={85}, ISSN={["1944-9097"]}, DOI={10.4315/JFP-21-205}, abstractNote={Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain polyphenolic compounds identified that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to, (1) PS: peanut skin diet without SE inoculation (2) PSSE: peanut skin diet and SE inoculation 3) CON: control diet without SE inoculation (4) CONSE: control diet with SE inoculation. Feed intake and body weights were determined at week 0 and 5. On days 10 and 24 post hatch, 3 birds/pen (24 total) from each treatment group were euthanized and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed using a t-test. Performance data was analyzed in a completely randomized design using a general linear mixed model to evaluate differences. There were no significant differences ( P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU/g for fecal, litter or feed between treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤0.1) to have a lower Salmonella CFU/g compared to the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.}, number={10}, journal={JOURNAL OF FOOD PROTECTION}, author={Redhead, Adam k. and Azman, Nur Fatin Inazlina Noor and Nasaruddin, Anis Izzaty and Vu, Thien and Santos, Fernanda and Malheiros, Ramon and Hussin, Anis Shobirin Meor and Toomer, Ondulla T.}, year={2022}, month={Oct}, pages={1479–1487} } @article{toomer_vu_wysocky_moraes_malheiros_anderson_2021, title={The Effect of Feeding Hens a Peanut Skin-Containing Diet on Hen Performance, and Shell Egg Quality and Lipid Chemistry}, volume={11}, ISSN={["2077-0472"]}, DOI={10.3390/agriculture11090894}, abstractNote={Peanut skins are a considerable waste product with little current economic value or use. We aimed to determine the dietary effects of peanut skins on layer production performance and egg quality and chemistry of the eggs produced. Two hundred commercial hens were randomly assigned to four treatments (five replicates) and fed ad libitum for 8 weeks: conventional control diet, diet containing 24% high-oleic peanut (HOPN), diet containing 3% peanut skin (PN Skin), and a diet with 2.5% oleic acid (OA). Hens fed the HOPN diet had significantly reduced body weights relative to the control and PN Skin treatments, producing fewer total eggs over the 8-week experimental period. Eggs weights were similar between the control and PN Skin treatments at weeks 2 and 4, while eggs from the PN Skin treatment group were heavier than other treatments at weeks 6 and 8 of the experiment. Eggs produced from the HOPN treatment had reduced saturated fatty acid (FA) content in comparison to the other treatment groups, while similar between PN Skin and control eggs at week 8 of the experiment. This study suggests that PN skins may be a suitable alternative layer feed ingredient.}, number={9}, journal={AGRICULTURE-BASEL}, author={Toomer, Ondulla and Vu, Thien and Wysocky, Rebecca and Moraes, Vera and Malheiros, Ramon and Anderson, Kenneth}, year={2021}, month={Sep} } @article{harding_vu_wysocky_malheiros_anderson_toomer_2021, title={The Effects of Feeding a Whole-in-Shell Peanut-Containing Diet on Layer Performance and the Quality and Chemistry of Eggs Produced}, volume={11}, ISSN={["2077-0472"]}, DOI={10.3390/agriculture11111176}, abstractNote={The abundance of peanut and poultry production within the state of North Carolina and the US Southeast, led us to conduct a layer feeding trial to determine the utilization of whole-in-shell high-oleic peanuts (WPN) and/or unblanched high-oleic peanuts (HOPN) as an alternative feed ingredient for poultry. To meet this objective, we randomly assigned 576 shaver hens to 4 dietary treatments (4 rep/trt). The dietary treatments consisted of a conventional control diet (C1), a diet containing 4% WPN, an 8% HOPN diet, and a control diet containing soy protein isolate (C2). Feed and water were provided for 6 weeks ad libitum. Pen body weights (BW) were recorded at week 0 and week 6 (wk6), and feed weights were recorded bi-weekly. Shell eggs were collected daily and enumerated. Bi-weekly 120 eggs/treatment were collected for quality assessment and egg weight (EW), while 16 eggs/treatment were collected for chemical analysis. There were no significant differences in BW or EW at week 6. Hens fed the C2 produced more total dozen eggs relative to C1 hens over the feeding trial (p < 0.05). Hens fed the C1 diet consumed less total feed relative to the other treatments with the best feed conversion ratio (p < 0.05). Most eggs produced from each treatment were USDA grade A, large eggs. There were no differences in egg quality, with the exception of yolk color, with significantly higher yolk color scores in eggs produced from the C1 and C2 treatments relative to the other treatments (p < 0.05). Eggs produced from the HOPN treatment had significantly reduced stearic and linoleic fatty acid levels relative to the other treatments (p < 0.05). Eggs produced from hens fed the WPN diet had significantly greater β-carotene content relative to eggs from the other treatment groups (p < 0.05). In summary, this study suggests that WPN and/or HOPN may be a suitable alternative layer feed ingredient and a dietary means to enrich the eggs produced while not adversely affecting hen performance.}, number={11}, journal={AGRICULTURE-BASEL}, author={Harding, Kari L. and Vu, Thien and Wysocky, Rebecca and Malheiros, Ramon and Anderson, Kenneth E. and Toomer, Ondulla T.}, year={2021}, month={Nov} } @article{redhead_sanders_vu_malheiros_anderson_toomer_2021, title={The effects of high-oleic peanuts as an alternate feed ingredient on performance, ileal digestibility, apparent metabolizable energy, and histology of the small intestine in laying hens}, volume={5}, ISSN={["2573-2102"]}, DOI={10.1093/tas/txab015}, abstractNote={Abstract We aimed to determine the effects of feeding a high-oleic peanut (HOPN) diet to egg-producing laying hens on egg quality, digestibility, and feed conversion. Three isonitrogenous and isocaloric dietary treatments were formulated with 1) Control diet (CON)—a corn-soybean meal conventional diet with 7.8 % added poultry fat, 2) HOPN diet—dietary inclusion of ~20% coarse-ground whole HOPN, and 3) oleic acid (CON-OA) diet—a control diet supplemented with 2.6% oleic fatty acid oil. Ninety-nine 57-wk-old brown Leghorn laying hens were randomly assigned to 33 animals per treatment. Animals were housed individually for 8 wk. Body and feed weights were recorded weekly and feed conversation ratio was calculated. Bi-weekly, shell eggs were analyzed for quality (yolk color, albumen height, and Haugh unit [HU]). Jejunum samples were collected at week 8 for histomorphometric analysis. Analysis of variance was performed on all variables using a general linear mixed model. Laying hens fed the CON-OA diet produced greater number of eggs relative to those fed the HOPN and control diets (P < 0.05). The roche yolk color value was higher (P < 0.001) in eggs from hens fed the HOPN diet. There were no differences in laying hen performance, eggshell color, eggshell strength, eggshell elasticity and egg albumen height, or egg HU, ileal fat digestibility, or villi surface among treatment groups. However, the apparent metabolizable energy (P < 0.01) and ileal protein digestibility (P = 0.02) were greater in laying hens fed the HOPN diet relative to the CON diet. This study suggests that whole unblanched high-oleic peanuts may be an acceptable alternative feed ingredient for laying hens.}, number={1}, journal={TRANSLATIONAL ANIMAL SCIENCE}, author={Redhead, Adam K. and Sanders, Elliot and Vu, Thien C. and Malheiros, Ramon D. and Anderson, Kenneth E. and Toomer, Ondulla T.}, year={2021}, month={Jan} } @article{ferket_malheiros_moraes_ayoola_barasch_toomer_torrent_2020, title={Effects of functional oils on the growth, carcass and meat characteristics, and intestinal morphology of commercial turkey toms}, volume={99}, ISSN={0032-5791}, url={http://dx.doi.org/10.1016/j.psj.2020.03.050}, DOI={10.1016/j.psj.2020.03.050}, abstractNote={Two experiments were conducted to evaluate the effects of functional oils containing cashew nutshell and castor oil on turkey performance and intestinal morphology. In experiment 1, 585 hatchlings were randomly placed in 15 replicate floor pens, (13 poults/pen) with recycled litter and provided feed and water ad libitum. Birds were randomly assigned to 3 dietary treatments from 1 to 12 wk: nonmedicated control, 0.15% functional oils, and 66-ppm monensin. From wk 13 to 20, each initial treatment group was further divided into 3 treatments—control (no additive), 0.15% of functional oils, or 20 ppm of virginiamycin to produce 9 different treatments, 5 replicate pens per treatment. Data on feed weights were collected weekly, and body weight bi-weekly. At termination (20 wk), birds were euthanized, and their meat was processed to determine mass of carcass sections and meat quality, while intestinal samples were collected for histology. In experiment 1, toms fed monensin or functional oils were 10.5 and 4.5% heavier (P < 0.05), respectively, than the controls at 12 wk. Birds fed monensin had a 4% improvement (P < 0.05) in feed conversion as compared to the other treatments. Neither virginiamycin nor the functional oils affected bird performance when fed from 13 to 20 wk. The jejunum villi surface area at 3 wk was most enhanced (P < 0.05) for the poults fed monensin. Supplementation with functional oils significantly reduced leg yield and thiobarbituric-acid reactive substances of white meat after 7 D of storage (P < 0.05). There were no effects on performance or carcass characteristics in experiment 2. While additional confirmatory studies are needed, functional oils in the diet of turkey toms may be a viable alternative to antibiotic growth promotants.}, number={7}, journal={Poultry Science}, publisher={Elsevier BV}, author={Ferket, P.R. and Malheiros, R.D. and Moraes, V.M.B. and Ayoola, A.A. and Barasch, I. and Toomer, O.T. and Torrent, J.}, year={2020}, month={Jul}, pages={3752–3760} } @article{warren_vu_toomer_fernandez_livingston_2020, title={Efficacy of 1-alpha-Hydroxycholecalciferol Supplementation in Young Broiler Feed Suggests Reducing Calcium Levels at Grower Phase}, volume={7}, ISSN={["2297-1769"]}, DOI={10.3389/fvets.2020.00245}, abstractNote={Increasing biopotency of cholecalciferol (D3) from vitamin sources is essential in the poultry industry to meet nutritional demands and counter stressors. D3 exhibits hormonal traits and is responsible for calcium (Ca) absorption. 1-α-Hydroxycholecalciferol (1α) is a synthetic form of D3 that has equal efficacy and is cheaper to synthesize than 1,25-dihydroxycholecalciferol (active form of D3), on broilers. However, 1α bypasses a critical regulatory point, the kidney, and may consequently lead to toxicity levels of Ca via Ca absorption. This study examined 1α supplementation in broiler diets with different Ca inclusion levels to determine if 1α at higher Ca levels caused Ca toxicity at starter and grower phases with Ross 708 male broiler chicks. In Experiment 1 (1–15 days of age), chicks were assigned to one of 10 treatment starter diets with five levels of Ca inclusion (0.80, 0.95, 1.10, 1.25, and 1.40%) with or without 1α supplementation (5 μg 1α/kg in feed) and eight replicate cages per treatment. In Experiment 2, chicks were fed common starter diet until 16 days of age, and then they were assigned to one of eight treatment diets with four levels of Ca inclusion (0.54, 0.76, 0.98, or 1.20%) with or without 1α supplementation (5 μg 1α/kg in feed). At the end of both experiments, blood was collected from broilers to determine blood chemistry, including concentrations of vitamin D metabolites. Intestinal tissues were also collected to examine gene expression. In Experiment 1, broilers not fed 1α exhibited a quadratic effect in ionized blood Ca (iCa) as dietary Ca inclusion levels increased; 1α-fed broilers displayed an increase in iCa as Ca inclusion levels increased (p = 0.0002). For Experiment 2, 1α-fed broilers displayed a decrease in 25-hydroxycholecalciferol plasma concentration as dietary Ca inclusion levels increased (p = 0.035); also, increasing Ca inclusion in diets increased expression of duodenal sodium phosphate cotransporter type II b (NPTIIb, p = 0.03). Our findings imply that inclusion of 1α was beneficial because 1α enhanced Ca absorption during the starter phase; however, to avoid potential Ca toxicity or antagonism while using 1α during the grower phase, there should be consideration with reducing dietary Ca levels.}, journal={FRONTIERS IN VETERINARY SCIENCE}, author={Warren, Matthew F. and Vu, Thien C. and Toomer, Ondulla T. and Fernandez, Juan David and Livingston, Kimberly A.}, year={2020}, month={Jun} } @article{toomer_sanders_vu_livingston_wall_malheiros_carvalho_livingston_ferket_anderson_2020, title={Potential Transfer of Peanut and/or Soy Proteins from Poultry Feed to the Meat and/or Eggs Produced}, volume={5}, ISSN={2470-1343 2470-1343}, url={http://dx.doi.org/10.1021/acsomega.9b03218}, DOI={10.1021/acsomega.9b03218}, abstractNote={Previous studies have demonstrated that allergenic feed proteins from peanuts in the diets of layer hens are not detected in the eggs produced. Hence, in this study, we aimed to determine if soy and/or peanut proteins in poultry feed rations of broiler chickens or layer hens would be transferred or detectable in the meat or eggs produced. To meet this objective, 99 layer hens and 300 broiler chickens were equally divided into treatment groups and fed one of three experimental diets: control soybean meal and corn diet, whole unblanched high-oleic peanut and corn diet (HO PN), or a control diet spiked supplemented with oleic acid (OA) oil. At termination, broiler chickens were processed, and chicken breast samples of the left pectoralis muscle were collected, and eggs were collected from layers. Total protein extracts from pooled egg samples and chicken breast samples were subjected to enzyme-linked immunosorbent assay (ELISA) methods and immunoblotting analysis with rabbit antipeanut agglutinin antibodies and rabbit antisoy antibodies for the detection of peanut and soy proteins. Peanut and soy proteins were undetected in all pooled egg samples and individual chicken breast meat samples using immunoblotting techniques with rabbit antipeanut agglutinin and rabbit antisoy antibodies. Moreover, quantitative ELISA allergen detection methods determined all pooled egg samples and individual meat samples as “not containing” peanut or soy allergens. Therefore, this study helps to evaluate the risk associated with the potential transfer of allergenic proteins from animal feed to the products produced for human consumption.}, number={2}, journal={ACS Omega}, publisher={American Chemical Society (ACS)}, author={Toomer, Ondulla T. and Sanders, Elliot and Vu, Thien C. and Livingston, Matthew L. and Wall, Brittany and Malheiros, Ramon D. and Carvalho, Luiz Victor and Livingston, Kim A. and Ferket, Peter R. and Anderson, Kenneth E.}, year={2020}, month={Jan}, pages={1080–1085} } @article{toomer_sanders_vu_malheiros_redhead_livingston_livingston_carvalho_ferket_2020, title={The effects of high-oleic peanuts as an alternative feed ingredient on broiler performance, ileal digestibility, apparent metabolizable energy, and histology of the intestine}, volume={4}, ISSN={["2573-2102"]}, DOI={10.1093/tas/txaa137}, abstractNote={Abstract Locally grown feed ingredients of high energy and protein content, such as peanuts, maybe economically feasible alternatives to corn and soybean meal in broiler diets. Even though normal-oleic peanuts have been demonstrated to be a viable feed ingredient for poultry, few studies to date have examined the use of high-oleic peanuts (HO PN) as an alternative feed ingredient for broiler chickens. Thus, we aimed to determine the effect of feeding HO PN on broiler performance, nutrient digestibility, and intestinal morphology. Three isocaloric, isonitrogenous experimental diets were formulated with 1) dietary inclusion of ~10% coarse-ground whole HO PN; 2) a corn-soybean meal control diet with 5.5% added poultry fat; and 3) a control diet supplemented with 5.5% oleic fatty acid oil. Three-hundred Ross 708 broilers were randomly placed in 10 replicate pens per treatment with 10 chicks per pen and raised until 42 d. Body weights (BW) and feed intake were determined weekly, and feed conversion ratio (FCR) was calculated. Jejunum samples were collected at 42 d for histomorphometric analysis. Analysis of variance was performed on all variables using a general linear mixed model in JMP Pro14. Broilers in the HO PN group had lower (P < 0.05) BW and higher FCR than other treatment groups at weeks 2 and 6. There were no significant differences in the jejunum villi surface area between the treatment groups. However, broilers fed the HO PN diet had greater (P = 0.019) apparent metabolizable energy relative to the other treatment groups, suggesting improved nutrient uptake of dietary fats and/or carbohydrates in the HO PN treatment group. However, additional studies are warranted to further define the nutritional value of HO PN as an alternative poultry feed ingredient.}, number={3}, journal={TRANSLATIONAL ANIMAL SCIENCE}, author={Toomer, Ondulla T. and Sanders, Elliot and Vu, Thien C. and Malheiros, Ramon D. and Redhead, Adam K. and Livingston, Matthew L. and Livingston, Kim A. and Carvalho, Luiz Victor and Ferket, Peter R.}, year={2020}, month={Jul} } @article{toomer_vu_pereira_williams_2019, title={Dietary supplementation with peanut skin polyphenolic extracts (PSPE) reduces hepatic lipid and glycogen stores in mice fed an atherogenic diet}, volume={55}, ISSN={["1756-4646"]}, DOI={10.1016/j.jff.2019.02.041}, abstractNote={The polyphenolic compounds found in red wine, grapes and peanut skins are bioactive compounds responsible for reduced mortality rates associated with cardiovascular disease. Resveratrol, a polyphenol found in the skin of grapes, reduced liver lipids and inflammation in mice fed an atherogenic diet. We aimed to assess the effects of polyphenolic compounds extracted from peanut skins by testing 3 treatments in mice (n = 10): atherogenic diet supplemented with peanut-skin polyphenolic extract (PSPE), atherogenic diet (ATH), and normal diet. Lymphocyte populations, blood glucose, hepatic cholesterol and glycogen and body weight (BW) were quantified at16 weeks. Mice fed the PSPE-diet had significantly improved BW, reduced hepatic glycogen and blood plasma glucose levels in comparison to the ATH treatment group. Moreover, hepatic cholesterol and lipid storage was reduced in mice fed the PSPE diet. Thus, PSPE could serve as a value added food and/or feed ingredient and an affordable plant source of antioxidants.}, journal={JOURNAL OF FUNCTIONAL FOODS}, author={Toomer, Ondulla T. and Vu, Thien and Pereira, Marion and Williams, Kristina}, year={2019}, month={Apr}, pages={362–370} } @article{toomer_livingston_wall_sanders_vu_malheiros_livingston_carvalho_ferket_2019, title={Meat quality and sensory attributes of meat produced from broiler chickens fed a high oleic peanut diet}, volume={98}, ISSN={0032-5791}, url={http://dx.doi.org/10.3382/ps/pez258}, DOI={10.3382/ps/pez258}, abstractNote={Previous studies have identified peanut meal prepared from normal-oleic peanuts as a suitable and economical ingredient for broiler feed. However, to date, no studies have examined the use of new, high-oleic peanut (HO-PN) cultivars as a feed ingredient for poultry. This project aimed to determine the effect of HO-PNs as a feed ingredient for broiler chickens on the quality and sensory attributes of the meat produced. To test 3 experimental diets, male broiler chicks were randomly placed, at hatch, in raised-wire cages, in 10 replicate pens per treatment with 10 chicks per cage. For 6 wk, chicks were fed, ad libitum, one of the three isocaloric, isonitrogenous diets: (1) a conventional soybean meal plus corn control diet, (2) 10 to 12% HO-PN + corn diet, or (3) a control corn diet spiked with ≈6.0% oleic fatty acid oil (OA). At 42 D, 3 broilers per pen (30 per treatment) were processed to determine meat quality and for consumer evaluation. Carcass weights and breast yields were reduced in broilers fed HO-PN, while leg carcass yields were greater in broilers fed HO-PN in comparison to the other groups. Chicken breast from broilers fed HO-PN had reduced meat-pH, reduced L* color values, and increased cooked loss compared to other treatments. Nevertheless, a group of 100-consumer panelists scored all 3-treatment groups similar in terms of sensory attributes for cooked chicken. While additional studies must be performed, this study suggest that HO-PN may be a suitable broiler feed ingredient.}, number={10}, journal={Poultry Science}, publisher={Elsevier BV}, author={Toomer, Ondulla T and Livingston, Matthew L and Wall, Brittany and Sanders, Elliot and Vu, Thien C and Malheiros, Ramon D and Livingston, Kim A and Carvalho, Luiz Victor and Ferket, Peter R}, year={2019}, month={Oct}, pages={5188–5197} } @article{christman_dean_allen_godinez_toomer_2019, title={Peanut skin phenolic extract attenuates hyperglycemic responses in vivo and in vitro}, volume={14}, ISSN={["1932-6203"]}, DOI={10.1371/journal.pone.0214591}, abstractNote={Diabetes affects at least 285 million people globally, and this number continues to increase. Clinical complications include impaired glucose metabolism, hyperglycemia, dyslipidemia, atherosclerosis and non-alcoholic fatty liver disease. Evidence has shown that natural phenolics play a protective effect on both the development and management of type 2 diabetes. This study evaluated effects of the extract from peanut skins containing polyphenols on induced- hyperglycemia using in vivo and in vitro methods. A human hepatocellular liver carcinoma cell line (HepG2) was used to investigate the effect of the peanut skin extract on cell viability after exposure to high glucose concentrations. In vivo, the effect of peanut skin extract on an oral glucose tolerance was investigated in human subjects. Fifteen participants aged 21–32 underwent an oral glucose tolerance test with five treatments: 1) 50-gram glucose solution (reference); 2). 50-gram glucose solution, followed by 12 mg of vegi-capsulated maltodextrin; 3) 50-gram glucose solution, followed by 120 mg of vegi-capsulated maltodextrin-encapsulated peanut skin extract; 4). 50-gram glucose solution, followed by 28 grams of unfortified coated peanuts; 5) 50-gram glucose solution, followed by 28 grams of chili lime coated peanuts fortified with encapsulated peanut skin extract. Glucose levels were measured using a continuous monitor. Peanut skin extract was found to attenuate the decrease in cell viability in high glucose treated HepG2 cells, showing a protective effect against hyperglycemia induced cell death. No difference in the glycemic response area under the curve between any treatments using the tolerance test, but the treatment of the peanut skin extract with the glucose reference resulted in a significantly lower peak blood glucose response at 45 minutes, indicating that it was effective at reducing the glycemic response. The present study shows that the phenolic extract of peanut skins has an antidiabetic effect, further confirming their value as a functional food ingredient.}, number={3}, journal={PLOS ONE}, author={Christman, Lindsey M. and Dean, Lisa L. and Allen, Jonathan C. and Godinez, Sofia Feng and Toomer, Ondulla T.}, year={2019}, month={Mar} } @article{toomer_hulse-kemp_dean_boykin_malheiros_anderson_2019, title={Feeding high-oleic peanuts to layer hens enhances egg yolk color and oleic fatty acid content in shell eggs}, volume={98}, ISSN={0032-5791}, url={http://dx.doi.org/10.3382/ps/pey531}, DOI={10.3382/ps/pey531}, abstractNote={ABSTRACT Previous studies have identified normal‐oleic peanuts as a suitable and economical broiler feed ingredient. However, no studies to date have examined the use of high‐oleic (HO) peanut cultivars as a feed ingredient for laying hens and determined the impact of feeding HO peanuts on performance and egg nutritive qualities. This project aimed to examine the use of HO peanuts as a feed ingredient for layer hens to determine the effect on performance, egg lipid chemistry, and quality of the eggs produced. Forty‐eight 40‐wk‐old layer hens were fed a conventional soybean meal + corn control diet or a HO peanut + corn diet for 10 wk in conventional battery cages. Body and feed weights were collected weekly. Pooled egg samples were analyzed for quality, lipid analysis, and peanut protein allergenicity. There were no significant differences in hen performance or egg quality as measured by USDA grade quality, egg albumen height, or egg Haugh unit between the treatment groups. However, eggs produced from layer hens fed the HO peanut + corn diet had reduced egg weights relative to the controls (P = 0.0001). Eggs produced from layer hens fed the HO peanut diet had greater yolk color scores (P < 0.0001), HO fatty acid (P < 0.0001), and &bgr;‐carotene (P < 0.0001) levels in comparison to the controls. Eggs produced from hens fed the control diet had greater palmitic and stearic saturated fatty acids (P < 0.0001), and trans fat (P < 0.0001) content compared to eggs produced from hens fed the HO peanut diet. All egg protein extracts from all treatments at each time point were non‐reactive with rabbit anti‐peanut agglutinin antibodies. This study identifies HO peanuts as an abundant commodity that could be used to support local agricultural markets of peanuts and poultry within the southeastern United States and be of economic advantage to producers while providing a potential health benefit to the consumer with improved egg nutrition.}, number={4}, journal={Poultry Science}, publisher={Elsevier BV}, author={Toomer, Ondulla T and Hulse-Kemp, Amanda M and Dean, Lisa L and Boykin, Deborah L and Malheiros, Ramon and Anderson, Kenneth E}, year={2019}, month={Apr}, pages={1732–1748} }