@article{curtis_berends_velpen_jennings_haag_chandra_kay_rimm_cassidy_2022, title={Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: Results from a double blind, randomized controlled trial in metabolic syndrome participants}, volume={41}, ISSN={["1532-1983"]}, url={https://doi.org/10.1016/j.clnu.2021.11.030}, DOI={10.1016/j.clnu.2021.11.030}, abstractNote={Whilst the cardioprotective effects of blueberry intake have been shown in prospective studies and short-term randomized controlled trials (RCTs), it is unknown whether anthocyanin-rich blueberries can attenuate the postprandial, cardiometabolic dysfunction which follows energy-dense food intakes; especially in at-risk populations. We therefore examined whether adding blueberries to a high-fat/high-sugar meal affected the postprandial cardiometabolic response over 24 h.A parallel, double-blind RCT (n = 45; age 63.4 ± 7.4 years; 64% male; BMI 31.4 ± 3.1 kg/m2) was conducted in participants with metabolic syndrome. After baseline assessments, an energy-dense drink (969 Kcals, 64.5 g fat, 84.5 g carbohydrate, 17.9 g protein) was consumed with either 26 g (freeze-dried) blueberries (equivalent to 1 cup/150 g fresh blueberries) or 26 g isocaloric matched placebo. Repeat blood samples (30, 60, 90, 120, 180, 360 min and 24 h), a 24 h urine collection and vascular measures (at 3, 6, and 24 h) were performed. Insulin and glucose, lipoprotein levels, endothelial function (flow mediated dilatation (FMD)), aortic and systemic arterial stiffness (pulse wave velocity (PWV), Augmentation Index (AIx) respectively), blood pressure (BP), and anthocyanin metabolism (serum and 24 h urine) were assessed.Blueberries favorably affected postprandial (0-24 h) concentrations of glucose (p < 0.001), insulin (p < 0.01), total cholesterol (p = 0.04), HDL-C, large HDL particles (L-HDL-P) (both p < 0.01), extra-large HDL particles (XL-HDL-P; p = 0.04) and Apo-A1 (p = 0.01), but not LDL-C, TG, or Apo-B. After a transient higher peak glucose concentration at 1 h after blueberry intake ([8.2 mmol/L, 95%CI: 7.7, 8.8] vs placebo [6.9 mmol/L, 95%CI: 6.4, 7.4]; p = 0.001), blueberries significantly attenuated 3 h glucose ([4.3 mmol/L, 95%CI: 3.8, 4.8] vs placebo [5.1 mmol/L, 95%CI: 4.6, 5.6]; p = 0.03) and insulin concentrations (blueberry: [23.4 pmol/L, 95%CI: 15.4, 31.3] vs placebo [52.9 pmol/L, 95%CI: 41.0, 64.8]; p = 0.0001). Blueberries also improved HDL-C ([1.12 mmol/L, 95%CI: 1.06, 1.19] vs placebo [1.08 mmol/L, 95%CI: 1.02, 1.14]; p = 0.04) at 90 min and XL-HDLP levels ([0.38 × 10-6, 95%CI: 0.35, 0.42] vs placebo [0.35 × 10-6, 95%CI: 0.32, 0.39]; p = 0.02) at 3 h. Likewise, significant improvements were observed 6 h after blueberries for HDL-C ([1.17 mmol/L, 95%CI: 1.11, 1.24] vs placebo [1.10 mmol/L, 95%CI: 1.03, 1.16]; p < 0.001), Apo-A1 ([1.37 mmol/L, 95%CI: 1.32, 1.41] vs placebo [1.31 mmol/L, 95%CI: 1.27, 1.35]; p = 0.003), L-HDLP ([0.70 × 10-6, 95%CI: 0.60, 0.81] vs placebo [0.59 × 10-6, 95%CI: 0.50, 0.68]; p = 0.003) and XL-HDLP ([0.44 × 10-6, 95%CI: 0.40, 0.48] vs placebo [0.40 × 10-6, 95%CI: 0.36, 0.44]; p < 0.001). Similarly, total cholesterol levels were significantly lower 24 h after blueberries ([4.9 mmol/L, 95%CI: 4.6, 5.1] vs placebo [5.0 mmol/L, 95%CI: 4.8, 5.3]; p = 0.04). Conversely, no effects were observed for FMD, PWV, AIx and BP. As anticipated, total anthocyanin-derived phenolic acid metabolite concentrations significantly increased in the 24 h after blueberry intake; especially hippuric acid (6-7-fold serum increase, 10-fold urinary increase). In exploratory analysis, a range of serum/urine metabolites were associated with favorable changes in total cholesterol, HDL-C, XL-HDLP and Apo-A1 (R = 0.43 to 0.50).For the first time, in an at-risk population, we show that single-exposure to the equivalent of 1 cup blueberries (provided as freeze-dried powder) attenuates the deleterious postprandial effects of consuming an energy-dense high-fat/high-sugar meal over 24 h; reducing insulinaemia and glucose levels, lowering cholesterol, and improving HDL-C, fractions of HDL-P and Apo-A1. Consequently, intake of anthocyanin-rich blueberries may reduce the acute cardiometabolic burden of energy-dense meals.NCT02035592 at www.clinicaltrials.gov.}, number={1}, journal={CLINICAL NUTRITION}, author={Curtis, Peter J. and Berends, Lindsey and Velpen, Vera and Jennings, Amy and Haag, Laura and Chandra, Preeti and Kay, Colin D. and Rimm, Eric B. and Cassidy, Aedin}, year={2022}, month={Jan}, pages={165–176} } @article{huang_xiao_zhang_sandhu_chandra_kay_edirisinghe_burton-freeman_2021, title={Strawberry Consumption, Cardiometabolic Risk Factors, and Vascular Function: A Randomized Controlled Trial in Adults with Moderate Hypercholesterolemia}, volume={151}, ISSN={["1541-6100"]}, DOI={10.1093/jn/nxab034}, abstractNote={BACKGROUND Certain fruits, such as strawberries, may impart cardiometabolic benefits due to their phytochemical content. OBJECTIVES Study aims were to assess the effects of strawberry intake on cardiometabolic risk factors and vascular endothelial function in adults with moderate hypercholesterolemia. METHODS This study was a randomized, controlled, double-blinded, 2-arm, 2-period (4-wk/period) crossover trial. Adults (n = 34; male/female 1:1; mean ± SEM age, 53 ± 1 y; BMI, 31 ± 1 kg/m2;  LDL cholesterol, 133 ± 3 mg/dL) were randomly allocated to 1 of 2 study sequences in a 1:1 ratio. Participants drank study beverages twice daily containing freeze-dried strawberry powder (2 × 25 g) or energy-, volume-matched control powder for 4 wk separated by a 4-wk washout. The primary outcome variable was the difference in fasting LDL cholesterol after 4-wk interventions. Secondary outcomes were metabolic markers, inflammation, quantitative (poly)phenolic metabolomics, flow-mediated dilation (FMD), and blood pressure (BP), with the latter (FMD, BP) also assessed acutely at 1 h and 2 h after a 50-g bolus strawberry or control beverage. Mixed-model analysis of repeated measures via PROC MIXED, PC-SAS was performed on primary and secondary outcome variables. RESULTS LDL cholesterol did not differ after the 4-wk interventions (P > 0.05), nor did fasting total cholesterol, triglycerides, glucose, insulin, high-sensitivity C-reactive protein, FMD, or BP (all P > 0.05). Significant intervention-by-hour interaction for FMD (P = 0.03) and BP (P = 0.05) revealed increased FMD at 1 h after strawberry compared with control by 1.5 ± 0.38% (P = 0.0008) and attenuated systolic BP at 2 h by 3.1 ± 0.99 mmHg (P = 0.02). Select phenolic metabolites increased significantly (P < 0.05) in blood following strawberry consumption while others decreased, including 3-(4-methoxyphenyl)propanoic acid-3-O-glucuronide, which was significantly correlated with increased FMD (P < 0.05). CONCLUSION Strawberries may improve vascular health, independent of other metabolic changes. The effect may be related to changes in microbial-derived phenolic metabolites after strawberry consumption influencing endothelial function. Data support inclusion of strawberries in a heart-healthy diet in adults with moderate hypercholesterolemia.This trial was registered at clinicaltrials.gov as NCT02612090.}, number={6}, journal={JOURNAL OF NUTRITION}, author={Huang, Leailin and Xiao, Di and Zhang, Xuhuiqun and Sandhu, Amandeep K. and Chandra, Preeti and Kay, Colin and Edirisinghe, Indika and Burton-Freeman, Britt}, year={2021}, month={Jun}, pages={1517–1526} } @article{lloyd_griffin_krueger_beales_barlow_sheets_ekpo_ross_chandra_rathore_et al._2020, title={Supplemental treatment options for diabetes: how flavanol metabolites improve beta-cell function}, volume={34}, ISSN={["1530-6860"]}, DOI={10.1096/fasebj.2020.34.s1.05762}, abstractNote={Diabetes is one of the fastest growing non‐infectious diseases in the world. Current treatments are composed of pharmaceutical agents that enhance insulin sensitivity and eventual insulin monotherapy. Type 2 diabetes is characterized by insulin insensitivity of peripheral tissue, glucose intolerance, and β‐cell dysfunction. Dietary interventions may benefit patients with diabetes, and various plant derived flavonoids have been shown to exert anti‐diabetic effects. While these flavonoids are large, difficult to absorb, and rarely found in circulation, gut bacteria metabolize these into smaller metabolites which can be observed in circulation. We hypothesize that these gut bacteria derived flavanoid metabolites are absorbed and have direct effects on β‐cell function. Male outbred wistar rats were fed one of three diets in the presence or absence of antibiotic treatment: standard diet, standard diet supplemented with catechin hydrate and epicatechin, or standard diet supplemented with grape seed extract. Total urine was collected from the animals (representing the total amount of absorbed metabolites), then metabolites were extracted and reconstituted in water. Here we present data regarding the in vitro effects of these absorbed gut bacteria derived flavanoids on INS‐1 832/13 β‐cell insulin secretion and proliferation. This study sheds further light on the potential ability of flavanoids and their gut bacteria derived metabolites to enhance functional β‐cell mass.}, journal={FASEB JOURNAL}, author={Lloyd, Trevor and Griffin, Laura and Krueger, Emily and Beales, Joseph and Barlow, Andrew and Sheets, Jared and Ekpo, Idongesit and Ross, Mimi and Chandra, Preeti and Rathore, Atul and et al.}, year={2020}, month={Apr} }