Philip Bradford Kungsadalpipob, P., Lubna, M. M., & Bradford, P. D. (2024, January 10). Novel three-dimensional printed continuous Zylon yarn reinforced polylactic acid composites utilizing compatible sizing. PROGRESS IN ADDITIVE MANUFACTURING. https://doi.org/10.1007/s40964-023-00549-x Zhang, L., Kowalik, M., Mao, Q., Damirchi, B., Zhang, Y., Bradford, P. D., … Zhu, Y. T. T. (2023). Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites. ACS APPLIED MATERIALS & INTERFACES, 15(27), 32656–32666. https://doi.org/10.1021/acsami.3c03209 Marashi, C. S., Bradford, P., & Peters, K. (2023). Laser Doppler vibrometry measurements of acoustic attenuation in optical fiber waveguides. APPLIED OPTICS, 62(16), E119–E124. https://doi.org/10.1364/AO.483827 Hossain, M. M., Lubna, M. M., & Bradford, P. D. (2023, January 9). Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles. ACS APPLIED MATERIALS & INTERFACES. https://doi.org/10.1021/acsami.2c19826 Hossain, M. M., Li, B. M. M., Sennik, B., Jur, J. S. S., & Bradford, P. D. D. (2022). Adhesive free, conformable and washable carbon nanotube fabric electrodes for biosensing. NPJ FLEXIBLE ELECTRONICS, 6(1). https://doi.org/10.1038/s41528-022-00230-3 Li, A., Vallabh, R., Bradford, P. D., Kim, D., & Seyam, A.-F. M. (2022, January 7). Development of hull material for high-altitude airship: A parametric study. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, Vol. 1. https://doi.org/10.1177/07316844211054852 Suh, T. C., Twiddy, J., Mahmood, N., Ali, K. M., Lubna, M. M., Bradford, P. D., … Gluck, J. M. (2022). Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications. ACS OMEGA, 7(23), 20006–20019. https://doi.org/10.1021/acsomega.2c01807 Yan, C., Zhou, Y., Cheng, H., Orenstein, R., Zhu, P., Yildiz, O., … Zhang, X. (2022). Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery. ENERGY STORAGE MATERIALS, 44, 136–144. https://doi.org/10.1016/j.ensm.2021.10.014 Yildiz, O., Lubna, M. M., Ramesh, V. P., Ozturk, M., & Bradford, P. D. (2022). Microporous vertically aligned CNT nanocomposites with tunable properties for use in flexible heat sinks. JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 7(4). https://doi.org/10.1016/j.jsamd.2022.100509 Garmabi, A., Elamin, M. A., Bradford, P. D., & Pankow, M. (2022, April 6). Understanding the role of bond point strain in the mechanical response of nonwoven polypropylene materials. JOURNAL OF COMPOSITE MATERIALS. https://doi.org/10.1177/00219983221087332 Aly, K., Muhuri, A. K., & Bradford, P. D. (2021). Fabrication of scalable, aligned and low density carbon nanotube/silicon carbide hybrid foams by polysilazane infiltration and pyrolysis. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 41(6), 3303–3313. https://doi.org/10.1016/j.jeurceramsoc.2020.12.035 Zhang, L., Ma, X., Zhang, Y., Bradford, P. D., & Zhu, Y. T. (2021). Length-dependent carbon nanotube film structures and mechanical properties. NANOTECHNOLOGY, 32(26). https://doi.org/10.1088/1361-6528/abef92 Aly, K., Lubna, M., & Bradford, P. D. (2021). Low density, three-dimensionally interconnected carbon nanotube/silicon carbide nanocomposites for thermal protection applications. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 41(1), 233–243. https://doi.org/10.1016/j.jeurceramsoc.2020.06.020 Aly, K., Aboubakr, S. H., & Bradford, P. D. (2021, October 21). One-step fabrication of bulk nanocomposites reinforced by carbon nanotube array fragments. POLYMER COMPOSITES, Vol. 10. https://doi.org/10.1002/pc.26359 Spencer, M. A., Yildiz, O., Kamboj, I., Bradford, P. D., & Augustyn, V. (2021). Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams. ENERGY & FUELS, 35(19), 16183–16193. https://doi.org/10.1021/acs.energyfuels.1c02352 Vallabh, R., Li, A., Bradford, P. D., Kim, D., & Seyam, A.-F. M. (2021, June 28). Ultra-lightweight fiber-reinforced envelope material for high-altitude airship. JOURNAL OF THE TEXTILE INSTITUTE, Vol. 6. https://doi.org/10.1080/00405000.2021.1948695 Kim, H., Ramalingam, M., Balakumar, V., Zhang, X., Gao, W., Son, Y.-A., & Bradford, P. D. (2020). Chemically interconnected ternary AgNP/polypyrrole/functionalized buckypaper composites as high-energy-density supercapacitor electrodes. CHEMICAL PHYSICS LETTERS, 739. https://doi.org/10.1016/j.cplett.2019.136957 Wang, Q., Yildiz, O., Li, A., Aly, K., Qiu, Y., Jiang, Q., … Bradford, P. D. (2020). High temperature carbon nanotube - Nanofiber hybrid filters. SEPARATION AND PURIFICATION TECHNOLOGY, 236. https://doi.org/10.1016/j.seppur.2019.116255 Li, B. M., Yildiz, O., Mills, A. C., Flewwellin, T. J., Bradford, P. D., & Jur, J. S. (2020). Iron-on carbon nanotube (CNT) thin films for biosensing E-Textile applications. CARBON, 168, 673–683. https://doi.org/10.1016/j.carbon.2020.06.057 Aksu, C., Bradford, P. D., & Jur, J. S. (2020). Microfluidic Behavior of Alumina Nanotube-Based Pathways within Hydrophobic CNT Barriers. LANGMUIR, 36(30), 8792–8799. https://doi.org/10.1021/acs.langmuir.0c01096 Wee, J., Hackney, D., Wells, B., Bradford, P. D., & Peters, K. (2020). Ultrasonic Lamb wave measurement sensitivity of aligned carbon nanotube coated fiber Bragg grating. JOURNAL OF PHYSICS-PHOTONICS, 2(1). https://doi.org/10.1088/2515-7647/ab525e Kim, H., Ramalingam, M., Balakumar, V., Zhang, X., Gao, W., Son, Y.-A., & Bradford, P. D. (2019). AgNP/crystalline PANI/EBP-composite-based supercapacitor electrode with internal chemical interactions. JOURNAL OF APPLIED POLYMER SCIENCE, 136(44). https://doi.org/10.1002/app.48164 Yildiz, O., Dirican, M., Fang, X., Fu, K., Jia, H., Stano, K., … Bradford, P. D. (2019). Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 166(4), A473–A479. https://doi.org/10.1149/2.0821902jes Aly, K., & Bradford, P. D. (2019). Real-time impact damage sensing and localization in composites through embedded aligned carbon nanotube sheets. COMPOSITES PART B-ENGINEERING, 162, 522–531. https://doi.org/10.1016/j.compositesb.2018.12.104 Ho, D. N., Yildiz, O., Bradford, P., Zhu, Y., & Fedkiw, P. S. (2018). A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode. JOURNAL OF APPLIED ELECTROCHEMISTRY, 48(1), 127–133. https://doi.org/10.1007/s10800-017-1140-8 Wee, J., Hackney, D., Bradford, P., & Peters, K. (2018). Effect of continuous optical fiber bonding on ultrasonic detection using fiber Bragg grating. SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, Vol. 10598. https://doi.org/10.1117/12.2295833 Wee, J., Hackney, D., Bradford, P., & Peters, K. (2018). Experimental Study on Directionality of Ultrasonic Wave Coupling Using Surface-Bonded Fiber Bragg Grating Sensors. JOURNAL OF LIGHTWAVE TECHNOLOGY, 36(4), 932–938. https://doi.org/10.1109/jlt.2017.2769960 Aksu, C., Ingram, W., Bradford, P. D., & Jur, J. S. (2018). Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures. NANOTECHNOLOGY, 29(33). https://doi.org/10.1088/1361-6528/aac79d Faraji, S., Stano, K., Akyildiz, H., Yildiz, O., Jur, J. S., & Bradford, P. D. (2018). Modifying the morphology and properties of aligned CNT foams through secondary CNT growth. NANOTECHNOLOGY, 29(29). https://doi.org/10.1088/1361-6528/aac03c Wee, J., Hackney, D., Bradford, P., & Peters, K. (2017). Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing. APPLIED OPTICS, 56(25), 7262–7268. https://doi.org/10.1364/ao.56.007262 Aly, K., Li, A., & Bradford, P. D. (2017). Compressive piezoresistive behavior of carbon nanotube sheets embedded in woven glass fiber reinforced composites. COMPOSITES PART B-ENGINEERING, 116, 459–470. https://doi.org/10.1016/j.compositesb.2016.11.002 He, N., Yoo, S., Meng, J., Yildiz, O., Bradford, P. D., Park, S., & Gao, W. (2017). Engineering biorefinery residues from loblolly pine for supercapacitor applications. CARBON, 120, 304–312. https://doi.org/10.1016/j.carbon.2017.05.056 Fang, X., Li, A., Yildiz, O., Shao, H., Bradford, P. D., & Ghosh, T. K. (2017). Enhanced anisotropic response of dielectric elastomer actuators with microcombed and etched carbon nanotube sheet electrodes. CARBON, 120, 366–373. https://doi.org/10.1016/j.carbon.2017.05.067 Wells, B., Kumar, R., Reynolds, C. L., Jr., Peters, K., & Bradford, P. D. (2017). Highly anisotropic magneto-transport and field orientation dependent oscillations in aligned carbon nanotube/epoxy composites. APPLIED PHYSICS LETTERS, 111(26). https://doi.org/10.1063/1.4999503 Yu, Y., Zhang, L., Yildiz, O., Deng, H., Zhao, C., Bradford, P. D., … Zhu, Y. (2017). Investigation of microcombing parameters in enhancing the properties of carbon nanotube yarns. MATERIALS & DESIGN, 134, 181–187. https://doi.org/10.1016/j.matdes.2017.08.035 Gigax, J. G., Bradford, P. D., & Shao, L. (2017). Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum. MATERIALS, 10(8). https://doi.org/10.3390/ma10080860 Wee, J., Hackney, D., Bradford, P., & Peters, K. (2017). Mechanisms of signal coupling to optical fiber for FBG sensor detection of Lamb waves. 2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS), Vol. 10323. https://doi.org/10.1117/12.2263278 He, N., Yildiz, O., Pan, Q., Zhu, J., Zhang, X., Bradford, P. D., & Gao, W. (2017). Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors. JOURNAL OF POWER SOURCES, 343, 492–501. https://doi.org/10.1016/j.jpowsour.2017.01.091 Faraji, S., Yildiz, O., Rost, C., Stano, K., Farahbakhsh, N., Zhu, Y., & Bradford, P. D. (2017). Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. CARBON, 111, 411–418. https://doi.org/10.1016/j.carbon.2016.10.012 Gigax, J. G., Bradford, P. D., & Shao, L. (2017, October 15). Radiation-induced mechanical property changes of CNT yarn. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol. 409, pp. 268–271. https://doi.org/10.1016/j.nimb.2017.04.050 Wee, J., Hackney, D. A., Bradford, P. D., & Peters, K. J. (2017). Simulating increased Lamb wave detection sensitivity of surface bonded fiber Bragg grating. SMART MATERIALS AND STRUCTURES, 26(4). https://doi.org/10.1088/1361-665x/aa646b Stano, K. L., Faraji, S., Yildiz, O., Akyildiz, H., Bradford, P. D., & Jur, J. S. (2017). Strong and resilient alumina nanotube and CNT/alumina hybrid foams with tuneable elastic properties. RSC ADVANCES, 7(45), 27923–27931. https://doi.org/10.1039/c7ra02452e Stahl, J. J., Bogdanovich, A. E., & Bradford, P. D. (2016). Carbon nanotube shear-pressed sheet interleaves for Mode I interlaminar fracture toughness enhancement. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 80, 127–137. https://doi.org/10.1016/j.compositesa.2015.10.014 Zhu, J., Yildirim, E., Aly, K., Shen, J., Chen, C., Lu, Y., … Zhang, X. (2016). Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study. JOURNAL OF MATERIALS CHEMISTRY A, 4(35), 13572–13581. https://doi.org/10.1039/c6ta04577d Wee, J., Wells, B., Hackney, D., Bradford, P., & Peters, K. (2016). Increasing signal amplitude in fiber Bragg grating detection of Lamb waves using remote bonding. APPLIED OPTICS, 55(21), 5564–5569. https://doi.org/10.1364/ao.55.005564 Zhang, L., Wang, X., Li, R., Li, Q., Bradford, P. D., & Zhu, Y. (2016). Microcombing enables high-performance carbon nanotube composites. COMPOSITES SCIENCE AND TECHNOLOGY, 123, 92–98. https://doi.org/10.1016/j.compscitech.2015.12.012 Qiu, L., Wang, X. T., Su, G. P., Tang, D. W., Zheng, X. H., Zhu, J., … al. (2016). Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. SCIENTIFIC REPORTS, 6. https://doi.org/10.1038/srep21014 Wee, J., Hackney, D., Peters, K., Wells, B., & Bradford, P. (2016). Sensitivity of contact-free fiber Bragg grating sensors to ultrasonic Lamb waves. SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2016, Vol. 9803. https://doi.org/10.1117/12.2218924 Aly, K., Li, A., & Bradford, P. D. (2016). Strain sensing in composites using aligned carbon nanotube sheets embedded in the interlaminar region. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 90, 536–548. https://doi.org/10.1016/j.compositesa.2016.08.003 Stano, K. L., Faraji, S., Hodges, R., Yildiz, O., Wells, B., Akyildiz, H. I., … Bradford, P. D. (2016). Ultralight Interconnected Metal Oxide Nanotube Networks. SMALL, 12(18), 2432–2438. https://doi.org/10.1002/smll.201503267 Stano, K. L., Faraji, S., Hodges, R., Yildiz, O., Wells, B., Akyildiz, H. I., … Bradford, P. D. (2016). Ultralight Materials: Ultralight Interconnected Metal Oxide Nanotube Networks (Small 18/2016). Small, 12(18), 2387–2387. https://doi.org/10.1002/SMLL.201670090 Bhanushali, H., & Bradford, P. D. (2016). Woven Glass Fiber Composites with Aligned Carbon Nanotube Sheet Interlayers. JOURNAL OF NANOMATERIALS, 2016. https://doi.org/10.1155/2016/9705257 Li, A., Bogdanovich, A. E., & Bradford, P. D. (2015, September). Aligned carbon nanotube sheet piezoresistive strain sensors. SMART MATERIALS AND STRUCTURES, Vol. 24. https://doi.org/10.1088/0964-1726/24/9/095004 Cakmak, E., Fang, X., Yildiz, O., Bradford, P. D., & Ghosh, T. K. (2015). Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. CARBON, 89, 113–120. https://doi.org/10.1016/j.carbon.2015.03.011 Yildiz, O., Stano, K., Faraji, S., Stone, C., Willis, C., Zhang, X., … Bradford, P. D. (2015). High performance carbon nanotube - polymer nanofiber hybrid fabrics. NANOSCALE, 7(40), 16744–16754. https://doi.org/10.1039/c5nr02732b Zhang, L., Wang, X., Xu, W., Zhang, Y., Li, Q., Bradford, P. D., & Zhu, Y. (2015). Strong and Conductive Dry Carbon Nanotube Films by Microcombing. SMALL, 11(31), 3830–3836. https://doi.org/10.1002/smll.201500111 Faraji, S., Stano, K. L., Yildiz, O., Li, A., Zhu, Y., & Bradford, P. D. (2015). Ultralight anisotropic foams from layered aligned carbon nanotube sheets. NANOSCALE, 7(40), 17038–17047. https://doi.org/10.1039/c5nr03899e Fu, K., Lu, Y., Dirican, M., Chen, C., Yanilmaz, M., Shi, Q., … Zhang, X. (2014). Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries. NANOSCALE, 6(13), 7489–7495. https://doi.org/10.1039/c4nr00518j Stano, K. L., Carroll, M., Padbury, R., McCord, M., Jur, J. S., & Bradford, P. D. (2014). Conformal Atomic Layer Deposition of Alumina on Millimeter Tall, Vertically-Aligned Carbon Nanotube Arrays. ACS APPLIED MATERIALS & INTERFACES, 6(21), 19135–19143. https://doi.org/10.1021/am505107s Zhou, Z., Wang, X., Faraji, S., Bradford, P. D., Li, Q., & Zhu, Y. (2014). Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. CARBON, 75, 307–313. https://doi.org/10.1016/j.carbon.2014.04.008 Li, S., Chen, C., Fu, K., White, R., Zhao, C., Bradford, P. D., & Zhang, X. (2014). Nanosized Ge@CNF, Ge@C@CNF and Ge@CNF@C composites via chemical vapour deposition method for use in advanced lithium-ion batteries. JOURNAL OF POWER SOURCES, 253, 366–372. https://doi.org/10.1016/j.jpowsour.2013.12.017 Thiagarajan, V., Wang, X., Bradford, P. D., Zhu, Y. T., & Yuan, F. G. (2014). Stabilizing carbon nanotube yarns using chemical vapor infiltration. COMPOSITES SCIENCE AND TECHNOLOGY, 90, 82–87. https://doi.org/10.1016/j.compscitech.2013.10.008 Faraji, S., Stano, K., Rost, C., Maria, J.-P., Zhu, Y., & Bradford, P. D. (2014). Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon, 79, 113–122. https://doi.org/10.1016/j.carbon.2014.07.049 Fu, K., Li, Y., Dirican, M., Chen, C., Lu, Y., Zhu, J., … al. (2014). Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium-sulfur batteries. CHEMICAL COMMUNICATIONS, 50(71), 10277–10280. https://doi.org/10.1039/c4cc04970e Fu, K., Yildiz, O., Bhanushali, H., Wang, Y., Stano, K., Xue, L., … Bradford, P. D. (2013). Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes. ADVANCED MATERIALS, 25(36), 5109–5114. https://doi.org/10.1002/adma.201301920 Yildiz, O., & Bradford, P. D. (2013). Aligned carbon nanotube sheet high efficiency particulate air filters. CARBON, 64, 295–304. https://doi.org/10.1016/j.carbon.2013.07.066 Stano, K. L., Chapla, R., Carroll, M., Nowak, J., McCord, M., & Bradford, P. D. (2013). Copper-Encapsulated Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces, 5(21), 10774–10781. https://doi.org/10.1021/AM402964E Fu, K., Xue, L. G., Yildiz, O., Li, S. L., Lee, H., Li, Y., … al. (2013). Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. NANO ENERGY, 2(5), 976–986. https://doi.org/10.1016/j.nanoen.2013.03.019 Liu, W., Zhao, H., Inoue, Y., Wang, X., Bradford, P. D., Kim, H., … Zhu, Y. (2012). Poly(vinyl alcohol) reinforced with large-diameter carbon nanotubes via spray winding. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 43(4), 587–592. https://doi.org/10.1016/j.compositesa.2011.12.029 Wang, X., Yong, Z. Z., Li, Q. W., Bradford, P. D., Liu, W., Tucker, D. S., … Zhu, Y. T. (2012). Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites. Materials Research Letters, 1(1), 19–25. https://doi.org/10.1080/21663831.2012.686586 Wang, X., Krommenhoek, P. J., Bradford, P. D., Gong, B., Tracy, J. B., Parsons, G. N., … Zhu, Y. T. (2011). Coating Alumina on Catalytic Iron Oxide Nanoparticles for Synthesizing Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces, 3(11), 4180–4184. https://doi.org/10.1021/am201082m Wang, X., Bradford, P. D., Liu, W., Zhao, H., Inoue, Y., Maria, J.-P., … Zhu, Y. (2011). Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. COMPOSITES SCIENCE AND TECHNOLOGY, 71(14), 1677–1683. https://doi.org/10.1016/j.compscitech.2011.07.023 Liu, W., Zhang, X., Xu, G., Bradford, P. D., Wang, X., Zhao, H., … Zhu, Y. (2011). Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray. CARBON, 49(14), 4786–4791. https://doi.org/10.1016/j.carbon.2011.06.089 Bradford, P. D., Wang, X., Zhao, H., & Zhu, Y. T. (2011). Tuning the compressive mechanical properties of carbon nanotube foam. CARBON, 49(8), 2834–2841. https://doi.org/10.1016/j.carbon.2011.03.012 Bradford, P. D., Wang, X., Zhao, H., Maria, J.-P., Jia, Q., & Zhu, Y. T. (2010). A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. COMPOSITES SCIENCE AND TECHNOLOGY, 70(13), 1980–1985. https://doi.org/10.1016/j.compscitech.2010.07.020 Zhao, H., Bradford, P. D., Wang, X., Liu, W., Luo, T. J. M., Jia, Q., … Yuan, F.-G. (2010). An intermetallic Fe-Zr catalyst used for growing long carbon nanotube arrays. MATERIALS LETTERS, 64(18), 1947–1950. https://doi.org/10.1016/j.matlet.2010.05.045 Bogdanovich, A. E., & Bradford, P. D. (2010). Carbon nanotube yarn and 3-D braid composites. Part I: Tensile testing and mechanical properties analysis. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 41(2), 230–237. https://doi.org/10.1016/j.compositesa.2009.10.002 Bradford, P. D., & Bogdanovich, A. E. (2010). Carbon nanotube yarn and 3-D braid composites. Part II: Dynamic mechanical analysis. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 41(2), 238–246. https://doi.org/10.1016/j.compositesa.2009.10.003 Zhao, H., Zhang, Y., Bradford, P. D., Zhou, Q., Jia, Q., Yuan, F.-G., & Zhu, Y. (2010). Carbon nanotube yarn strain sensors. NANOTECHNOLOGY, 21(30). https://doi.org/10.1088/0957-4484/21/30/305502 Bradford, P. D., & Bogdanovich, A. E. (2008). Electrical conductivity study of carbon nanotube yarns, 3-D hybrid braids and their composites. JOURNAL OF COMPOSITE MATERIALS, 42(15), 1533–1545. https://doi.org/10.1177/0021998308092206 Bogdanovich, A., Bradford, P., Mungalov, D., Fang, S. L., Zhang, M., Baughman, R. H., & Hudson, S. (2007). Fabrication and mechanical characterization of carbon nanotube yarns, 3-D braids, and their composites. SAMPE Journal, 43(1), 6–19.