@article{padbury_halbur_krommenhoek_tracy_jur_2015, title={Thermal Stability of Gold Nanoparticles Embedded within Metal Oxide Frameworks Fabricated by Hybrid Modifications onto Sacrificial Textile Templates}, volume={31}, ISSN={0743-7463 1520-5827}, url={http://dx.doi.org/10.1021/LA504094G}, DOI={10.1021/la504094g}, abstractNote={The stability and spatial separation of nanoparticles (NP's) is essential for employing their advantageous nanoscale properties. This work demonstrates the entrapment of gold NP's embedded in a porous inorganic matrix. Initially, gold NP's are decorated on fibrous nylon-6, which is used as an inexpensive sacrificial template. This is followed by inorganic modification using a novel single exposure cycle vapor phase technique resulting in distributed NP's embedded within a hybrid organic-inorganic matrix. The processing is extended to the synthesis of porous nanoflakes after calcination of the modified nylon-6 yielding a porous metal oxide framework surrounding the disconnected NP's with a surface area of 250 m(2)/g. A unique feature of this work is the use of a transmission electron microscope (TEM) equipped with an in situ annealing sample holder. The apparatus affords the opportunity to explore the underlying nanoscopic stability of NP's embedded in these frameworks in a single step. TEM analysis indicates thermal stability up to 670 °C and agglomeration characteristics thereafter. The vapor phase processes developed in this work will facilitate new complex NP/oxide materials useful for catalytic platforms.}, number={3}, journal={Langmuir}, publisher={American Chemical Society (ACS)}, author={Padbury, Richard P. and Halbur, Jonathan C. and Krommenhoek, Peter J. and Tracy, Joseph B. and Jur, Jesse S.}, year={2015}, month={Jan}, pages={1135–1141} } @article{krommenhoek_tracy_2013, title={Magnetic Field-Directed Self-Assembly of Magnetic Nanoparticle Chains in Bulk Polymers}, volume={30}, ISSN={["1521-4117"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000327250600004&KeyUID=WOS:000327250600004}, DOI={10.1002/ppsc.201300101}, abstractNote={Peter J. Krommenhoek and Joseph B. Tracy * IO N Self-assembly is the thermodynamically guided organization of disordered systems into more highly ordered structures. The process of life exemplifi es the power and diversity of selfassembly, and understanding and controlling self-assembly is crucial for engineering advanced materials from molecular and nanoscale precursors. Nature has preceded researchers’ efforts in magnetic fi eld-directed self-assembly (MFDSA) in magnetotactic bacteria, which navigate in the earth’s magnetic fi eld using magnetically coupled chains of iron oxide nanoparticles (NPs). [ 1 ]}, number={9}, journal={PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION}, author={Krommenhoek, Peter J. and Tracy, Joseph B.}, year={2013}, month={Sep}, pages={759–763} } @article{krommenhoek_wang_hentz_johnston-peck_kozek_kalyuzhny_tracy_2012, title={Bulky Adamantanethiolate and Cyclohexanethiolate Ligands Favor Smaller Gold Nanoparticles with Altered Discrete Sizes}, volume={6}, ISSN={["1936-0851"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000305661300037&KeyUID=WOS:000305661300037}, DOI={10.1021/nn3003778}, abstractNote={Use of bulky ligands (BLs) in the synthesis of metal nanoparticles (NPs) gives smaller core sizes, sharpens the size distribution, and alters the discrete sizes. For BLs, the highly curved surface of small NPs may facilitate growth, but as the size increases and the surface flattens, NP growth may terminate when the ligand monolayer blocks BLs from transporting metal atoms to the NP core. Batches of thiolate-stabilized Au NPs were synthesized using equimolar amounts of 1-adamantanethiol (AdSH), cyclohexanethiol (CySH), or n-hexanethiol (C6SH). The bulky CyS- and AdS-stabilized NPs have smaller, more monodisperse sizes than the C6S-stabilized NPs. As the bulkiness increases, the near-infrared luminescence intensity increases, which is characteristic of small Au NPs. Four new discrete sizes were measured by MALDI-TOF mass spectrometry, Au(30)(SAd)(18), Au(39)(SAd)(23), Au(65)(SCy)(30), and Au(67)(SCy)(30). No Au(25)(SAd)(18) was observed, which suggests that this structure would be too sterically crowded. Use of BLs may also lead to the discovery of new discrete sizes in other systems.}, number={6}, journal={ACS NANO}, author={Krommenhoek, Peter J. and Wang, Junwei and Hentz, Nathaniel and Johnston-Peck, Aaron C. and Kozek, Krystian A. and Kalyuzhny, Gregory and Tracy, Joseph B.}, year={2012}, month={Jun}, pages={4903–4911} } @article{jie_niskala_johnston-peck_krommenhoek_tracy_fan_you_2012, title={Laterally patterned magnetic nanoparticles}, volume={22}, ISSN={["1364-5501"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000298970700034&KeyUID=WOS:000298970700034}, DOI={10.1039/c1jm14612b}, abstractNote={Laterally patterning magnetic nanoparticles (MNPs) through self-assembly and simple solution processing constitutes an important step toward inexpensive nanoparticle-based devices. In this work, MNPs were laterally patterned on metal thin films using laterally patterned self-assembled monolayers (SAMs) as a template. SAMs of inactive molecules were first patterned on an Au thin film using the soft-lithographic technique, microcontact printing. The active, bifunctional molecules, 1,10-decanedithiol or 4-(11-mercaptoundecyl)benzene-1,2-diol, were then patterned through backfilling. The MNPs selectively bind to the terminal thiols or modified catechols when the substrates are submerged into a solution of MNPs. By adjusting the deposition conditions, both monolayers and partial multilayers were controllably formed. Co, Ni, Fe3O4, and FePt MNPs, as well as Au non-magnetic nanoparticles were successfully patterned by this process. This generalized approach is anticipated to be adaptable to many other kinds of nanoparticlesvia judicious selection of the substrates, surfactant ligands (on the nanoparticle), and/or surface-bound monolayers.}, number={5}, journal={JOURNAL OF MATERIALS CHEMISTRY}, author={Jie, Yanni and Niskala, Jeremy R. and Johnston-Peck, Aaron C. and Krommenhoek, Peter J. and Tracy, Joseph B. and Fan, Huiqing and You, Wei}, year={2012}, pages={1962–1968} } @article{wang_krommenhoek_bradford_gong_tracy_parsons_luo_zhu_2011, title={Coating Alumina on Catalytic Iron Oxide Nanoparticles for Synthesizing Vertically Aligned Carbon Nanotube Arrays}, volume={3}, ISSN={1944-8244 1944-8252}, url={http://dx.doi.org/10.1021/am201082m}, DOI={10.1021/am201082m}, abstractNote={To synthesize long and uniform vertically aligned carbon nanotube (VACNT) arrays, it is essential to use catalytic nanoparticles (NPs) with monodisperse sizes and to avoid NP agglomeration at the growth temperature. In this work, VACNT arrays were grown on chemically synthesized Fe(3)O(4) NPs of diameter 6 nm by chemical vapor deposition. Coating the NPs with a thin layer of Al(2)O(3) prior to CNT growth preserves the monodisperse sizes, resulting in uniform, thick and dense VACNT arrays. Comparison with uncoated NPs shows that the Al(2)O(3) coating effectively prevents the catalyst NPs from sintering and coalescing, resulting in improved control over VACNT growth.}, number={11}, journal={ACS Applied Materials & Interfaces}, publisher={American Chemical Society (ACS)}, author={Wang, Xin and Krommenhoek, Peter J. and Bradford, Philip D. and Gong, Bo and Tracy, Joseph B. and Parsons, Gregory N. and Luo, Tzy-Jiun M. and Zhu, Yuntian T.}, year={2011}, month={Oct}, pages={4180–4184} }