@article{hillaire_nithyanandam_song_nadimi_kiani_dickey_daniels_2023, title={Interfacial Tension Hysteresis of Eutectic Gallium-Indium}, volume={12}, ISSN={["1616-3028"]}, url={https://doi.org/10.1002/adfm.202311501}, DOI={10.1002/adfm.202311501}, abstractNote={AbstractWhen in a pristine state, gallium and its alloys have the largest interfacial tensions of any liquid at room temperature. Nonetheless, applying as little as 0.8 V of electric potential across eutectic gallium indium (EGaIn) placed within aqueous sodium hydroxide (NaOH, or other electrolyte) solution will cause the metal to behave as if its interfacial tension is near zero. The mechanism behind this phenomenon has remained poorly understood because NaOH dissolves the oxide species, making it difficult to directly measure the concentration, thickness, or chemical composition of the film that forms at the interface. In addition, the oxide layers formed are atomically‐thin. Here, it presents a suite of techniques that allow to simultaneously measure both electrical and interfacial properties as a function of applied electric potential, allowing for new insights into the mechanisms, which cause the dramatic decrease in interfacial tension. A key discovery from this work is that the interfacial tension displays hysteresis while lowering the applied potential. It combines these observations with electrochemical impedance spectroscopy to evaluate how these changes in interfacial tension arise from chemical, electrical, and mechanical changes on the interface, and close with ideas for how to build a free energy model to predict these changes from first principles.}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Hillaire, Keith D. and Nithyanandam, Praneshnandan and Song, Minyung and Nadimi, Sahar Rashid and Kiani, Abolfazl and Dickey, Michael D. and Daniels, Karen E.}, year={2023}, month={Dec} } @article{yang_nithyanandam_kanetkar_kwon_ma_im_oh_shamsi_wilkins_daniele_et al._2023, title={Liquid Metal Coated Textiles with Autonomous Electrical Healing and Antibacterial Properties}, volume={4}, ISSN={["2365-709X"]}, DOI={10.1002/admt.202202183}, abstractNote={AbstractConductive textiles are promising for human–machine interfaces and wearable electronics. A simple way to create conductive textiles by coating fabric with liquid metal (LM) particles is reported. The coating process involves dip‐coating the fabric into a suspension of LM particles at room temperature. Despite being coated uniformly after drying, the textiles remain electrically insulating due to the native oxide that forms on the LM particles. Yet, they can be rendered conductive by compressing the textile to rupture the oxide and thereby percolate the particles. Thus, compressing the textile with a patterned mold can pattern conductive circuits on the textile. The electrical conductivity of these circuits increases by coating more particles on the textile. Notably, the conductive patterns autonomously heal when cut by forming new conductive paths along the edge of the cut. The textiles prove to be useful as circuit interconnects, Joule heaters, and flexible electrodes to measure ECG signals. Further, the LM‐coated textiles provide antimicrobial protection against Pseudomonas aeruginosa and Staphylococcus aureus. Such simple coatings provide a route to convert otherwise insulating textiles into electrical circuits with the ability to autonomously heal and provide antimicrobial properties.}, journal={ADVANCED MATERIALS TECHNOLOGIES}, author={Yang, Jiayi and Nithyanandam, Praneshnandan and Kanetkar, Shreyas and Kwon, Ki Yoon and Ma, Jinwoo and Im, Sooik and Oh, Ji-Hyun and Shamsi, Mohammad and Wilkins, Mike and Daniele, Michael and et al.}, year={2023}, month={Apr} } @article{yang_kwon_kanetkar_xing_nithyanandam_li_jung_gong_tuman_shen_et al._2021, title={Skin-Inspired Capacitive Stress Sensor with Large Dynamic Range via Bilayer Liquid Metal Elastomers}, volume={11}, ISSN={["2365-709X"]}, DOI={10.1002/admt.202101074}, abstractNote={AbstractSoft devices that sense touch are important for prosthetics, soft robotics, and electronic skins. One way to sense touch is to use a capacitor consisting of a soft dielectric layer sandwiched between two electrodes. Compressing the capacitor brings the electrodes closer together and thereby increases capacitance. Ideally, sensors of touch should have both large sensitivity and the ability to measure a wide range of stress (dynamic range). Although skin has such capabilities, it remains difficult to achieve both sensitivity and dynamic range in a single manmade sensor. Inspired by skin, this work reports a soft capacitive pressure sensor based on a bilayer of liquid metal elastomer foam (B‐LMEF). The B‐LMEF consists of an elastomer slab (elastic modulus: ≈655 kPa) laminated with a soft liquid metal elastomer foam (LMEF, elastic modulus: ≈7 kPa). The LMEF deforms at small stresses (<10 kPa), and both layers deform at large stresses (>10 kPa). The B‐LMEF has high sensitivity (0.073 kPa–1) at small stress and can operate over a large range of stress (200 kPa), which leads to a large dynamic range (≈4.1 × 105). Additionally, the elastomer slab has a large energy dissipation coefficient; the skin uses this property to cushion the human body from external stress and strain.}, journal={ADVANCED MATERIALS TECHNOLOGIES}, author={Yang, Jiayi and Kwon, Ki Yoon and Kanetkar, Shreyas and Xing, Ruizhe and Nithyanandam, Praneshnandan and Li, Yang and Jung, Woojin and Gong, Wei and Tuman, Mary and Shen, Qingchen and et al.}, year={2021}, month={Nov} }