@article{stevens_pan_ravichandiran_franzon_2023, title={Chiplet Set For Artificial Intelligence}, ISSN={["2164-0157"]}, DOI={10.1109/3DIC57175.2023.10154953}, abstractNote={The design reuse strategy has significantly shortened the time required to create complex System on Chips (SoCs). However, when introducing new intellectual properties (IPs), the monolithic SoC methodology requires a re-run of system-level validation steps, incurring significant costs. Partitioning the design into chiplets over an interposer would mitigate these issues by consigning the IP updates to the individual chiplet. This paper presents a chipletized design used for Artificial Intelligence (AI). This design details a scalable AI chiplet set, along with Central Processing Units (CPUs). The AI chiplet set includes an Long Short Term Memory (LSTM) Application Specific Instruction Set Processor (ASIP) for accelerating inference and training and an Sparse Convolution Neural Network (SCNN) ASIP for accelerating inference through a zero-skipping technique. The CPUs control AI accelerators and handle general tasks. The accelerators and CPUs have an AXI crossbar Network on Chip (NoC) for memory and one for controlling the accelerators. This project has two phases: phase one, IP validation with an emulated interposer (No interposer, connect chiplets through back end of line (BEOL) metal layers), and phase two, connecting validated IP through an interposer. This paper focuses on phase one, which uses the United Semiconductor Japan Co. (USJC) 55 nm LP process to fabricate the design. The chiplets' clock frequencies range from 200 - 400 MHz.}, journal={2023 IEEE INTERNATIONAL 3D SYSTEMS INTEGRATION CONFERENCE, 3DIC}, author={Stevens, Joshua A. and Pan, Tse-Han and Ravichandiran, Prasanth Prabu and Franzon, Paul D.}, year={2023} } @article{kashyap_ravichandiran_wang_baron_wong_wu_franzon_2023, title={Thermal Estimation for 3D-ICs through Generative Networks}, ISSN={["2164-0157"]}, DOI={10.1109/3DIC57175.2023.10154977}, abstractNote={Thermal limitations play a significant role in modern integrated chips (ICs) design and performance. 3D integrated chip (3DIC) makes the thermal problem even worse due to a high density of transistors and heat dissipation bottlenecks within the stack-up. These issues exacerbate the need for quick thermal solutions throughout the design flow. This paper presents a generative approach for modeling the power to heat dissipation for a 3DIC. This approach focuses on a single layer in a stack and shows that, given the power map, the model can generate the resultant heat for the bulk. It shows two approaches, one straightforward approach where the model only uses the power map and the other where it learns the additional parameters through random vectors. The first approach recovers the temperature maps with 1.2 C° or a root-mean-squared error (RMSE) of 0.31 over the images with pixel values ranging from -1 to 1. The second approach performs better, with the RMSE decreasing to 0.082 in a 0 to 1 range. For any result, the model inference takes less than 100 millisecond for any given power map. These results show that the generative approach has speed advantages over traditional solvers while enabling results with reasonable accuracy for 3DIC, opening the door for thermally aware floorplanning.}, journal={2023 IEEE INTERNATIONAL 3D SYSTEMS INTEGRATION CONFERENCE, 3DIC}, author={Kashyap, Priyank and Ravichandiran, Prasanth P. and Wang, Lee and Baron, Dror and Wong, Chau-Wai and Wu, Tianfu and Franzon, Paul D.}, year={2023} } @article{ravichandiran_franzon_2021, title={A Review of 3D-Dynamic Random-Access Memory based Near-Memory Computation}, ISSN={["2164-0157"]}, DOI={10.1109/3DIC52383.2021.9687615}, abstractNote={The growth of Neural Networks (NNs) and Machine Learning (ML) usage has rapidly increased over the last decade. Traditional dynamic random-access memory (DRAM) is struggling to meet the computational, throughput demands of these NNs and has become a bottleneck in the system. One of the commonly proposed solutions is Near-Memory Computation (NMC) hardware accelerators to move the computation closer to the data resulting in improved throughput and reduced power consumption. In this paper, we analyze a few critical NMC architecture implementations, specifically those with 3D-Stacked DRAM memory. We have organized a literature review across structures, configuration, application, performance metrics, and present challenges and opportunities.}, journal={2021 IEEE INTERNATIONAL 3D SYSTEMS INTEGRATION CONFERENCE (3DIC)}, author={Ravichandiran, Prasanth Prabu and Franzon, Paul D.}, year={2021} }