@article{sarkar_mischler_randall_collier_dorman_boggess_muddiman_rao_2016, title={Identification of Epigenetic Factor Proteins Expressed in Human Embryonic Stem Cell-Derived Trophoblasts and in Human Placental Trophoblasts}, volume={15}, ISSN={["1535-3907"]}, DOI={10.1021/acs.jproteome.5b01118}, abstractNote={Human embryonic stem cells (hESCs) have been used to derive trophoblasts through differentiation in vitro. Intriguingly, mouse ESCs are prevented from differentiation to trophoblasts by certain epigenetic factor proteins such as Dnmt1, thus necessitating the study of epigenetic factor proteins during hESC differentiation to trophoblasts. We used stable isotope labeling by amino acids in cell culture and quantitative proteomics to study changes in the nuclear proteome during hESC differentiation to trophoblasts and identified changes in the expression of 30 epigenetic factor proteins. Importantly, the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B were downregulated. Additionally, we hypothesized that nuclear proteomics of hESC-derived trophoblasts may be used for screening epigenetic factor proteins expressed by primary trophoblasts in human placental tissue. Accordingly, we conducted immunohistochemistry analysis of six epigenetic factor proteins identified from hESC-derived trophoblasts-DNMT1, DNMT3B, BAF155, BAF60A, BAF57, and ING5-in 6-9 week human placentas. Indeed, expression of these proteins was largely, though not fully, consistent with that observed in 6-9 week placental trophoblasts. Our results support the use of hESC-derived trophoblasts as a model for placental trophoblasts, which will enable further investigation of epigenetic factors involved in human trophoblast development.}, number={8}, journal={JOURNAL OF PROTEOME RESEARCH}, author={Sarkar, Prasenjit and Mischler, Adam and Randall, Shan M. and Collier, Timothy S. and Dorman, Karen F. and Boggess, Kim A. and Muddiman, David C. and Rao, Balaji M.}, year={2016}, month={Aug}, pages={2433–2444} } @article{sarkar_randall_collier_nero_russell_muddiman_rao_2015, title={Activin/Nodal Signaling Switches the Terminal Fate of Human Embryonic Stem Cell-derived Trophoblasts}, volume={290}, ISSN={["1083-351X"]}, DOI={10.1074/jbc.m114.620641}, abstractNote={Background: Specification of terminal fate in trophoblasts derived from human embryonic stem cells is not understood. Results: Inhibition of activin/nodal signaling triggers extravillous fate, but loss of inhibition causes syncytial fate. Conclusion: Activin/nodal signaling switches the terminal fate of trophoblasts. Significance: We provide a model system that allows for targeted derivation of extravillous trophoblasts and syncytiotrophoblasts. Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs.}, number={14}, journal={JOURNAL OF BIOLOGICAL CHEMISTRY}, author={Sarkar, Prasenjit and Randall, Shan M. and Collier, Timothy S. and Nero, Anthony and Russell, Teal A. and Muddiman, David C. and Rao, Balaji M.}, year={2015}, month={Apr}, pages={8834–8848} } @misc{tiruthani_sarkar_rao_2013, title={Trophoblast differentiation of human embryonic stem cells}, volume={8}, ISSN={["1860-7314"]}, DOI={10.1002/biot.201200203}, abstractNote={Abstract}, number={4}, journal={BIOTECHNOLOGY JOURNAL}, author={Tiruthani, Karthik and Sarkar, Prasenjit and Rao, Balaji}, year={2013}, month={Apr}, pages={421-+} } @article{sarkar_randall_muddiman_rao_2012, title={Targeted Proteomics of the Secretory Pathway Reveals the Secretome of Mouse Embryonic Fibroblasts and Human Embryonic Stem Cells}, volume={11}, ISSN={["1535-9484"]}, DOI={10.1074/mcp.m112.020503}, abstractNote={Proteins endogenously secreted by human embryonic stem cells (hESCs) and those present in hESC culture medium are critical regulators of hESC self-renewal and differentiation. Current MS-based approaches for identifying secreted proteins rely predominantly on MS analysis of cell culture supernatants. Here we show that targeted proteomics of secretory pathway organelles is a powerful alternate approach for interrogating the cellular secretome. We have developed procedures to obtain subcellular fractions from mouse embryonic fibroblasts (MEFs) and hESCs that are enriched in secretory pathway organelles while ensuring retention of the secretory cargo. MS analysis of these fractions from hESCs cultured in MEF conditioned medium (MEF-CM) or MEFs exposed to hESC medium revealed 99 and 129 proteins putatively secreted by hESCs and MEFs, respectively. Of these, 53 and 62 proteins have been previously identified in cell culture supernatants of MEFs and hESCs, respectively, thus establishing the validity of our approach. Furthermore, 76 and 37 putatively secreted proteins identified in this study in MEFs and hESCs, respectively, have not been reported in previous MS analyses. The identification of low abundance secreted proteins via MS analysis of cell culture supernatants typically necessitates the use of altered culture conditions such as serum-free medium. However, an altered medium formulation might directly influence the cellular secretome. Indeed, we observed significant differences between the abundances of several secreted proteins in subcellular fractions isolated from hESCs cultured in MEF-CM and those exposed to unconditioned hESC medium for 24 h. In contrast, targeted proteomics of secretory pathway organelles does not require the use of customized media. We expect that our approach will be particularly valuable in two contexts highly relevant to hESC biology: obtaining a temporal snapshot of proteins secreted in response to a differentiation trigger, and identifying proteins secreted by cells that are isolated from a heterogeneous population.}, number={12}, journal={MOLECULAR & CELLULAR PROTEOMICS}, author={Sarkar, Prasenjit and Randall, Shan M. and Muddiman, David C. and Rao, Balaji M.}, year={2012}, month={Dec}, pages={1829–1839} } @article{sarkar_collier_randall_muddiman_rao_2012, title={The subcellular proteome of undifferentiated human embryonic stem cells}, volume={12}, ISSN={["1615-9853"]}, DOI={10.1002/pmic.201100507}, abstractNote={Abstract}, number={3}, journal={PROTEOMICS}, author={Sarkar, Prasenjit and Collier, Timothy S. and Randall, Shan M. and Muddiman, David C. and Rao, Balaji M.}, year={2012}, month={Feb}, pages={421–430} } @article{collier_randall_sarkar_rao_dean_muddiman_2011, title={Comparison of stable-isotope labeling with amino acids in cell culture and spectral counting for relative quantification of protein expression}, volume={25}, ISSN={["1097-0231"]}, DOI={10.1002/rcm.5151}, abstractNote={Protein quantification is one of the principal goals of mass spectrometry (MS)‐based proteomics, and many strategies exist to achieve it. Several approaches involve the incorporation of a stable‐isotope label using either chemical derivatization, enzymatically catalyzed incorporation of 18O, or metabolic labeling in a cell or tissue culture. These techniques can be cost or time prohibitive or not amenable to the biological system of interest. Label‐free techniques including those utilizing integrated ion abundance and spectral counting offer an alternative to stable‐isotope‐based methodologies. Herein, we present the comparison of stable‐isotope labeling of amino acids in cell culture (SILAC) with spectral counting for the quantification of human embryonic stem cells as they differentiate toward the trophectoderm at three time points. Our spectral counting experimental strategy resulted in the identification of 2641 protein groups across three time points with an average sequence coverage of 30.3%, of which 1837 could be quantified with more than five spectral counts. SILAC quantification was able to identify 1369 protein groups with an average coverage of 24.7%, of which 1027 could be quantified across all time points. Within this context we further explore the capacity of each strategy for proteome coverage, variation in quantification, and the relative sensitivity of each technique to the detection of change in relative protein expression. Copyright © 2011 John Wiley & Sons, Ltd.}, number={17}, journal={RAPID COMMUNICATIONS IN MASS SPECTROMETRY}, author={Collier, Timothy S. and Randall, Shan M. and Sarkar, Prasenjit and Rao, Balaji M. and Dean, Ralph A. and Muddiman, David C.}, year={2011}, month={Sep}, pages={2524–2532} }