@article{pan_kaur_barnes_detwiler_sanford_liu_xu_mahn_tang_hao_et al._2021, title={Structure, dynamics, and regulation of TRF1-TIN2-mediated trans- and cis-interactions on telomeric DNA}, volume={297}, ISSN={["1083-351X"]}, DOI={10.1016/j.jbc.2021.101080}, abstractNote={TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.}, number={3}, journal={JOURNAL OF BIOLOGICAL CHEMISTRY}, author={Pan, Hai and Kaur, Parminder and Barnes, Ryan and Detwiler, Ariana C. and Sanford, Samantha Lynn and Liu, Ming and Xu, Pengning and Mahn, Chelsea and Tang, Qingyu and Hao, Pengyu and et al.}, year={2021}, month={Sep} } @article{chakraborty_pan_tang_woolard_xu_2018, title={The Extracellular Domain of Pollen Receptor Kinase 3 is structurally similar to the SERK family of co-receptors}, volume={8}, ISSN={["2045-2322"]}, DOI={10.1038/s41598-018-21218-y}, abstractNote={During reproduction in flowering plants, the male gametophyte delivers an immotile male gamete to the female gametophyte in the pistil by formation of pollen tubes. In Arabidopsis thaliana, two synergid cells situated on either side of the egg cell produce cysteine-rich chemoattractant peptide LURE that guides the pollen tube to the female gametophyte for sexual reproduction. Recently, in Arabidopsis thaliana, Pollen Receptor Kinase 3 (PRK3), along with PRK1, PRK6, and PRK8, have been predicted to be the receptors responsible for sensing LURE. These receptors belong to the Leucine Rich Repeat Receptor Like Kinases (LRR-RLKs), the largest family of receptor kinases found in Arabidopsis thaliana. How PRKs regulate the growth and development of the pollen tube remains elusive. In order to better understand the PRK-mediated signaling mechanism in pollen tube growth and guidance, we have determined the crystal structure of the extracellular domain (ecd) of PRK3 at 2.5 Å, which resembles the SERK family of plant co-receptors. The structure of ecdPRK3 is composed of a conserved surface that coincides with the conserved receptor-binding surface of the SERK family of co-receptors. Our structural analyses of PRK3 have provided a template for future functional studies of the PRK family of LRR-RLK receptors in the regulation of pollen tube development.}, journal={SCIENTIFIC REPORTS}, author={Chakraborty, Sayan and Pan, Haiyun and Tang, Qingyu and Woolard, Colin and Xu, Guozhou}, year={2018}, month={Feb} }