@misc{sheats_yin_fang_park_crews_parikh_dickson_adler_2019, title={MARCKS and Lung Disease}, volume={60}, ISSN={["1535-4989"]}, DOI={10.1165/rcmb.2018-0285TR}, abstractNote={MARCKS (myristoylated alanine-rich C kinase substrate) is a prominent PKC substrate expressed in all eukaryotic cells. It is known to bind to and cross-link actin filaments, to serve as a bridge between Ca2+/calmodulin and PKC signaling, and to sequester the signaling molecule phosphatidylinositol 4,5-bisphosphate in the plasma membrane. Since the mid-1980s, this evolutionarily conserved and ubiquitously expressed protein has been associated with regulating cellular events that require dynamic actin reorganization, including cellular adhesion, migration, and exocytosis. More recently, translational studies have implicated MARCKS in the pathophysiology of a number of airway diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and acute lung injury/acute respiratory distress syndrome. This article summarizes the structure and cellular function of MARCKS (also including MARCKS family proteins and MARCKSL1 [MARCKS-like protein 1]). Evidence for MARCKS's role in several lung diseases is discussed, as are the technological innovations that took MARCKS-targeting strategies from theoretical to therapeutic. Descriptions and updates derived from ongoing clinical trials that are investigating inhalation of a MARCKS-targeting peptide as therapy for patients with chronic bronchitis, lung cancer, and ARDS are provided.}, number={1}, journal={AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY}, author={Sheats, Mary K. and Yin, Qi and Fang, Shijing and Park, Joungjoa and Crews, Anne L. and Parikh, Indu and Dickson, Brian and Adler, Kenneth B.}, year={2019}, month={Jan}, pages={16–27} } @article{su_huang_ma_liang_dinh_chen_shen_allen_qiao_li_et al._2019, title={Platelet-Inspired Nanocells for Targeted Heart Repair After Ischemia/Reperfusion Injury}, volume={29}, ISSN={["1616-3028"]}, DOI={10.1002/adfm.201803567}, abstractNote={Cardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post-heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post-ischemic recovery. A platelet-inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)-modified platelet membrane and cardiac stromal cell-secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct-homing ability of platelet membrane and the overexpression of PGE2 receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.}, number={4}, journal={ADVANCED FUNCTIONAL MATERIALS}, author={Su, Teng and Huang, Ke and Ma, Hong and Liang, Hongxia and Dinh, Phuong-Uyen and Chen, Justin and Shen, Deliang and Allen, Tyler A. and Qiao, Li and Li, Zhenhua and et al.}, year={2019}, month={Jan} } @article{qiao_hu_liu_zhang_ma_huang_li_su_vandergrif_tang_et al._2019, title={microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential}, volume={129}, ISSN={["1558-8238"]}, url={https://doi.org/10.1172/JCI123135}, DOI={10.1172/JCI123135}, abstractNote={Exosomes, as functional paracrine units of therapeutic cells, can partially reproduce the reparative properties of their parental cells. The constitution of exosomes, as well as their biological activity, largely depends on the cells that secrete them. We isolated exosomes from explant-derived cardiac stromal cells from patients with heart failure (FEXO) or from normal donor hearts (NEXO) and compared their regenerative activities in vitro and in vivo. Patients in the FEXO group exhibited an impaired ability to promote endothelial tube formation and cardiomyocyte proliferation in vitro. Intramyocardial injection of NEXO resulted in structural and functional improvements in a murine model of acute myocardial infarction. In contrast, FEXO therapy exacerbated cardiac function and left ventricular remodeling. microRNA array and PCR analysis revealed dysregulation of miR-21-5p in FEXO. Restoring miR-21-5p expression rescued FEXO's reparative function, whereas blunting miR-21-5p expression in NEXO diminished its therapeutic benefits. Further mechanistic studies revealed that miR-21-5p augmented Akt kinase activity through the inhibition of phosphatase and tensin homolog. Taken together, the heart failure pathological condition altered the miR cargos of cardiac-derived exosomes and impaired their regenerative activities. miR-21-5p contributes to exosome-mediated heart repair by enhancing angiogenesis and cardiomyocyte survival through the phosphatase and tensin homolog/Akt pathway.}, number={6}, journal={JOURNAL OF CLINICAL INVESTIGATION}, publisher={American Society for Clinical Investigation}, author={Qiao, Li and Hu, Shiqi and Liu, Suyun and Zhang, Hui and Ma, Hong and Huang, Ke and Li, Zhenhua and Su, Teng and Vandergrif, Adam and Tang, Junnan and et al.}, year={2019}, month={Jun}, pages={2237–2250} } @article{yin_fang_park_crews_parikh_adler_2016, title={An Inhaled Inhibitor of Myristoylated Alanine-Rich C Kinase Substrate Reverses LPS-Induced Acute Lung Injury in Mice}, volume={55}, ISSN={["1535-4989"]}, DOI={10.1165/rcmb.2016-0236rc}, abstractNote={Section:ChooseTop of pageAbstract <