M Rahman Rafiei, A., Rahman, M. S., & Gabr, M. A. (2023). Evaluation of wave-induced instability of nearly saturated sandy slopes under partially undrained condition: A case study of landslide in Fraser River delta front. COMPUTERS AND GEOTECHNICS, 159. https://doi.org/10.1016/j.compgeo.2023.105496 Rafiei, A., Rahman, M. S., & Gabr, M. A. (2022). Response and Instability of Sloping Seabed Supporting Small Marine Structures: Wave - Structure-Soil Interaction Analysis. JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 144(3). https://doi.org/10.1115/1.4052864 Rafiei, A., Rahman, M. S., Gabr, M. A., & Ghayoomi, M. (2021). Analysis of wave-induced submarine landslides in nearly saturated sediments at intermediate water depths. Marine Georesources & Geotechnology, 40(12), 1411–1423. https://doi.org/10.1080/1064119X.2021.2001610 Cen, W. J., Du, X. H., Wang, H., Yan, J., & Rahman, M. S. (2021). Impact of Underliner on the Local Deformation of HDPE Geomembranes. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 147(6). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002533 Cen, W. J., Du, X. H., He, H. N., Yan, J., & Rahman, M. S. (2020). Laboratory testing and numerical modeling of geomembrane electrical leak detection surveys. GEOSYNTHETICS INTERNATIONAL, 27(5), 490–502. https://doi.org/10.1680/jgein.20.00012 Cen, W. J., Wang, H., Yu, L., & Rahman, M. S. (2020). Response of High-Density Polyethylene Geomembrane-Sand Interfaces under Cyclic Shear Loading: Laboratory Investigation. INTERNATIONAL JOURNAL OF GEOMECHANICS, 20(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001540 Cen, W., Luo, J., Yu, J., & Shamin Rahman, M. (2020). Slope Stability Analysis Using Genetic Simulated Annealing Algorithm in Conjunction with Finite Element Method. KSCE JOURNAL OF CIVIL ENGINEERING, 24(1), 30–37. https://doi.org/10.1007/s12205-020-2051-5 Rafiei, A., Rahman, M. S., & Gabr, M. A. (2019). Computational Geotechnics. Geo-Congress 2019. Presented at the Eighth International Conference on Case Histories in Geotechnical Engineering. https://doi.org/10.1061/9780784482124.019 Cen, W. J., Luo, J. R., Zhang, W. D., & Rahman, M. S. (2018). An Enhanced Generalized Plasticity Model for Coarse Granular Material considering Particle Breakage. ADVANCES IN CIVIL ENGINEERING, 2018. https://doi.org/10.1155/2018/7242936 Liu, J., Lei, H., Zheng, G., Feng, S., & Rahman, M. S. (2018). Improved Synchronous and Alternate Vacuum Preloading Method for Newly Dredged Fills: Laboratory Model Study. International Journal of Geomechanics, 18(8), 04018086. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001220 Rahman, M. S., & Ulker, M. B. C. (2018). Modeling and Computing for Geotechnical Engineering (M. S. Rahman & M. B. Can Ülker, Eds.). https://doi.org/10.1201/9780429426186 Zheng, G., Liu, J., Lei, H., Rahman, M. S., & Tan, Z. (2017). Improvement of very soft ground by a high-efficiency vacuum preloading method: A case study. MARINE GEORESOURCES & GEOTECHNOLOGY, 35(5), 631–642. https://doi.org/10.1080/1064119x.2016.1215363 Aghazadeh Ardebili, Z., Gabr, M. A., & Rahman, M. S. (2016). Uplift Capacity of Plate Anchors in Saturated Clays: Analyses with Different Constitutive Models. International Journal of Geomechanics, 16(2). https://doi.org/10.1061/(asce)gm.1943-5622.0000518 Hassan, T., & Rahman, M. (2015). Constitutive Models in Simulating Low-Cycle Fatigue and Ratcheting Responses of Elbow. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 137(3). https://doi.org/10.1115/1.4029069 Hassan, T., Rahman, M., & Bari, S. (2015). Low-Cycle Fatigue and Ratcheting Responses of Elbow Piping Components. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 137(3). https://doi.org/10.1115/1.4029068 Gabr, M. A., Xiao, J., & Rahman, M. S. (2015). Plastic Flow of Sand and Pullout Capacity of Suction Caissons. Journal of Geotechnical and Geoenvironmental Engineering, 141(8), 02815002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001331 Aghazadeh, Z., Rahman, M. S., & Gabr, M. (2014). Evaluation of plate anchors capacity in saturated soils using different constitutive models. 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014, vol 3. https://doi.org/10.1115/omae2014-24226 Xiao, J., Gabr, M., & Rahman, M. S. (2014). Preliminary Structural Design of OCAES Vessel. Volume 9B: Ocean Renewable Energy. https://doi.org/10.1115/omae2014-24053 Mashrei, M. A., Seracino, R., & Rahman, M. S. (2013). Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. CONSTRUCTION AND BUILDING MATERIALS, 40, 812–821. https://doi.org/10.1016/j.conbuildmat.2012.11.109 Ulker, M. B. C., Rahman, M. S., & Guddati, M. N. (2011). Breaking wave-induced response and instability of seabed around caisson breakwater. International Journal for Numerical and Analytical Methods in Geomechanics, 36(3), 362–390. https://doi.org/10.1002/nag.1073 Mashrei, M. A., Abdulrazzaq, N., Abdalla, T. Y., & Rahman, M. S. (2010). Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members. ENGINEERING STRUCTURES, 32(6), 1723–1734. https://doi.org/10.1016/j.engstruct.2010.02.024 Ulker, M. B. C., Rahman, M. S., & Guddati, M. N. (2010). Standing wave-induced dynamic response and instability of seabed under a caisson breakwater. Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering, 2010, vol 1, 737–746. https://doi.org/10.1115/omae2010-20524 Ulker, M. B. C., Rahman, M. S., & Guddati, M. N. (2010). Wave-induced dynamic response and instability of seabed around caisson breakwater. OCEAN ENGINEERING, 37(17-18), 1522–1545. https://doi.org/10.1016/j.oceaneng.2010.09.004 Ulker, M. B. C., & Rahman, M. S. (2009). Response of saturated and nearly saturated porous media: Different formulations and their applicability. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 33(5), 633–664. https://doi.org/10.1002/nag.739 Ulker, M. B. C., Rahman, M. S., & Jeng, D.-S. (2009). Wave-induced response of seabed: Various formulations and their applicability. APPLIED OCEAN RESEARCH, 31(1), 12–24. https://doi.org/10.1016/j.apor.2009.03.003 Xu, Q., & Rahman, M. S. (2008). Finite element analyses of layered visco-elastic system under vertical circular loading. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 32(8), 897–913. https://doi.org/10.1002/nag.650 Ulker, M. B. C., Rahman, M. S., Zhen, R., & Mirmiran, A. (2008). Traffic barriers under vehicular impact: From computer simulation to design guidelines. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 23(6), 465–480. https://doi.org/10.1111/j.1467-8667.2008.00552.x Jeon, J., & Rahman, M. S. (2007). A neural network model for prediction of pile setup. TRANSPORTATION RESEARCH RECORD, (2004), 12–19. https://doi.org/10.3141/2004-02 Sarica, R. Z., & Rahman, M. S. (2006). Analysis of Ground Motion: A Comparison of Some Available Methods. GeoCongress 2006. Presented at the GeoCongress 2006. https://doi.org/10.1061/40803(187)200 Rahman, M. S., Islam, M. R., & Yamada, M. (2006). Spectroscopic investigation of strain induced by compositional variation in bulk InxGa1–xAs crystal grown by MCZM method. Crystal Research and Technology, 41(4), 358–363. https://doi.org/10.1002/crat.200510999 Kim, K. J., Rahman, M. S., Gabr, M. A., Sarica, R. Z., & Hossain, M. S. (2005). Reliability Based Calibration of Resistance Factors for Axial Capacity of Driven Piles. Advances in Deep Foundations, 132, 735–746. https://doi.org/10.1061/40778(157)12 Rahman, M. S., & Wang, J. (2002). Fuzzy neural network models for liquefaction prediction. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 22(8), 685–694. https://doi.org/10.1016/S0267-7261(02)00059-3 Rahman, M. S., Wang, J., Deng, W., & Carter, J. P. (2001). A neural network model for the uplift capacity of suction caissons. COMPUTERS AND GEOTECHNICS, 28(4), 269–287. https://doi.org/10.1016/S0266-352X(00)00033-1 Jeng, D. S., & Rahman, M. S. (2000). Effective stresses in a porous seabed of finite thickness: inertia effects. CANADIAN GEOTECHNICAL JOURNAL, 37(6), 1383–1392. https://doi.org/10.1139/cgj-37-6-1383 Wang, J., & Rahman, M. S. (1999). A neural network model for liquefaction-induced horizontal ground displacement. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 18(8), 555–568. https://doi.org/10.1016/S0267-7261(99)00027-5 Rahman, M. S., & Yeh, C. H. (1999). Variability of seismic response of soils using stochastic finite element method. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 18(3), 229–245. https://doi.org/10.1016/S0267-7261(98)00031-1 Muhanna, A. S., Rahman, M. S., & Lambe, P. C. (1998). Model for resilient modulus and permanent strain of subgrade soils. In Testing of conventional and unconventional aggregates and soils (pp. 85–93). https://doi.org/10.3141/1619-10 Yeh, C. H., & Rahman, M. S. (1998). Stochastic finite element methods for the seismic response of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 22(10), 819–850. https://doi.org/10.1002/(SICI)1096-9853(1998100)22:10<819::AID-NAG943>3.3.CO;2-9 Rahman, M. S., & El-Zahaby, K. E. (1997). Inclusion of fuzzy variables in geotechnical risk analysis. Computer methods and advances in geomechanics: Proceedings of the Ninth International Conference of the Association for Computer Methods and Advances in Geomechnics: Wuhan, China, 2-7 November, 1997, 9(1997), 567–572. Rahman, M. S. (1997). Instability and movements of ocean floor sediments: a review. International Journal of Offshore and Polar Engineering, 7(3), 220–225.