@article{collias_leenay_slotkowski_zuo_collins_mcgirr_liu_beisel_2020, title={A positive, growth-based PAM screen identifies noncanonical motifs recognized by the S. pyogenes Cas9}, volume={6}, ISBN={2375-2548}, DOI={10.1126/sciadv.abb4054}, abstractNote={SpyCas9 and its engineered variants can recognize NYGG PAMs, affecting their use for genome editing and off-target predictions. CRISPR technologies have overwhelmingly relied on the Streptococcus pyogenes Cas9 (SpyCas9), with its consensus NGG and less preferred NAG and NGA protospacer-adjacent motifs (PAMs). Here, we report that SpyCas9 also recognizes sequences within an N(A/C/T)GG motif. These sequences were identified on the basis of preferential enrichment in a growth-based screen in Escherichia coli. DNA binding, cleavage, and editing assays in bacteria and human cells validated recognition, with activities paralleling those for NAG(A/C/T) PAMs and dependent on the first two PAM positions. Molecular-dynamics simulations and plasmid-clearance assays with mismatch-intolerant variants supported induced-fit recognition of an extended PAM by SpyCas9 rather than recognition of NGG with a bulged R-loop. Last, the editing location for SpyCas9-derived base editors could be shifted by one nucleotide by selecting between (C/T)GG and adjacent N(C/T)GG PAMs. SpyCas9 and its enhanced variants thus recognize a larger repertoire of PAMs, with implications for precise editing, off-target predictions, and CRISPR-based immunity.}, number={29}, journal={SCIENCE ADVANCES}, author={Collias, D. and Leenay, R. T. and Slotkowski, R. A. and Zuo, Z. and Collins, S. P. and McGirr, B. A. and Liu, J. and Beisel, C. L.}, year={2020}, month={Jul} } @article{liao_slotkowski_beisel_2019, title={CRATES: A one-step assembly method for Class 2 CRISPR arrays}, volume={629}, ISBN={["978-0-12-818671-8"]}, ISSN={["0076-6879"]}, DOI={10.1016/bs.mie.2019.04.011}, abstractNote={CRISPR-Cas systems naturally rely on CRISPR arrays to achieve immunity against multiple foreign invaders, where these arrays are also being utilized for multiplexed targeting as part of CRISPR technologies. However, CRISPR arrays have proven difficult to synthesize or assemble to-date due to the repetitive DNA repeats in each array. To overcome this barrier, we recently reported a cloning method we term CRATES (CRISPR Assembly through Trimmed Ends of Spacers) for the single-step, efficient generation of large Class 2 CRISPR arrays. CRATES generates CRISPR arrays through assembly of multiple repeat-spacer subunits using defined junction sequences within the trimmed portion of the CRISPR spacers. These arrays can be utilized by single-effector nucleases associated with Class 2 CRISPR-Cas systems, such as Cas9, Cas12a/Cpf1, or Cas13a/C2c2. Here, we describe in detail the steps for generating arrays utilized by Cas9 and Cas12a as well as composite arrays co-utilized by both nucleases. We also generate a representative three-spacer array and demonstrate multiplexed DNA cleavage through plasmid-clearance assays in Escherichia coli. This method is expected to simplify the study of natural CRISPR arrays and facilitate multiplexed targeting with programmable nucleases from Class 2 Cas nucleases across the myriad applications of CRISPR technologies.}, journal={TUMOR IMMUNOLOGY AND IMMUNOTHERAPY - MOLECULAR METHODS}, author={Liao, Chunyu and Slotkowski, Rebecca A. and Beisel, Chase L.}, year={2019}, pages={493–511} } @article{liao_ttofali_slotkowski_denny_cecil_leenay_keung_beisel_2019, title={Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis}, volume={10}, ISSN={["2041-1723"]}, DOI={10.1038/s41467-019-10747-3}, abstractNote={Abstract CRISPR-Cas systems inherently multiplex through CRISPR arrays—whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis.}, journal={NATURE COMMUNICATIONS}, author={Liao, Chunyu and Ttofali, Fani and Slotkowski, Rebecca A. and Denny, Steven R. and Cecil, Taylor D. and Leenay, Ryan T. and Keung, Albert J. and Beisel, Chase L.}, year={2019}, month={Jul} } @article{liao_slotkowski_achmedov_beisel_2019, title={The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays}, volume={16}, ISSN={["1555-8584"]}, DOI={10.1080/15476286.2018.1526537}, abstractNote={ABSTRACT The Class 2 Type V-A CRISPR effector protein Cas12a/Cpf1 has gained widespread attention in part because of the ease in achieving multiplexed genome editing, gene regulation, and DNA detection. Multiplexing derives from the ability of Cas12a alone to generate multiple guide RNAs from a transcribed CRISPR array encoding alternating conserved repeats and targeting spacers. While array design has focused on how to optimize guide-RNA sequences, little attention has been paid to sequences outside of the CRISPR array. Here, we show that a structured hairpin located immediately downstream of the 3ʹ repeat interferes with utilization of the adjacent encoded guide RNA by Francisella novicida (Fn)Cas12a. We first observed that a synthetic Rho-independent terminator immediately downstream of an array impaired DNA cleavage based on plasmid clearance in E. coli and DNA cleavage in a cell-free transcription-translation (TXTL) system. TXTL-based cleavage assays further revealed that inhibition was associated with incomplete processing of the transcribed CRISPR array and could be attributed to the stable hairpin formed by the terminator. We also found that the inhibitory effect partially extended to upstream spacers in a multi-spacer array. Finally, we found that removing the terminal repeat from the array increased the inhibitory effect, while replacing this repeat with an unprocessable terminal repeat from a native FnCas12a array restored cleavage activity directed by the adjacent encoded guide RNA. Our study thus revealed that sequences surrounding a CRISPR array can interfere with the function of a CRISPR nuclease, with implications for the design and evolution of CRISPR arrays.}, number={4}, journal={RNA BIOLOGY}, author={Liao, Chunyu and Slotkowski, Rebecca A. and Achmedov, Tatjana and Beisel, Chase L.}, year={2019}, month={Apr}, pages={404–412} } @article{leenay_maksimchuk_slotkowski_agrawal_gomaa_briner_barrangou_beisel_2016, title={Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems}, volume={62}, ISSN={["1097-4164"]}, DOI={10.1016/j.molcel.2016.02.031}, abstractNote={

Summary

CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature.}, number={1}, journal={MOLECULAR CELL}, publisher={Elsevier BV}, author={Leenay, Ryan T. and Maksimchuk, Kenneth R. and Slotkowski, Rebecca A. and Agrawal, Roma N. and Gomaa, Ahmed A. and Briner, Alexandra E. and Barrangou, Rodolphe and Beisel, Chase L.}, year={2016}, month={Apr}, pages={137–147} }