@article{baby_michielsen_wu_2021, title={Effects of yarn size and blood drop size on wicking and bloodstains in textiles}, volume={66}, ISSN={["1556-4029"]}, DOI={10.1111/1556-4029.14702}, abstractNote={Abstract}, number={4}, journal={JOURNAL OF FORENSIC SCIENCES}, author={Baby, Ruksana and Michielsen, Stephen and Wu, Jiaying}, year={2021}, month={Jul}, pages={1246–1256} } @article{baby_mathur_denhartog_2021, title={Nondestructive quantitative evaluation of yarns and fabrics and determination of contact area of fabrics using x-ray micro-computed tomography system for skin-textiles friction analysis}, volume={13}, ISSN={1944-8244 1944-8252}, url={http://dx.doi.org/10.1021/acsami.0c18300}, DOI={10.1021/acsami.0c18300}, abstractNote={In different mechanical conditions, repetitive friction in combination with pressure, shear, temperature, and moisture leads to skin discomfort and imposes the risks of developing skin injuries such as blisters and pressure ulcers, frequently reported in athletes, military personnel, and in people with compromised skin conditions and/or immobility. Textiles next to skin govern the skin microclimate, have the potential to influence the mechanical contact with skin, and contribute to skin comfort and health. The adhesion-friction theory suggests that contact area is a critical factor to influence adhesion, and therefore, friction force. Friction being a surface phenomenon, most of the studies concentrated on the surface profile or topographic analysis of textiles. This study investigated both the surface profiles and the inner construction of the fabrics through X-ray microcomputed tomographic three-dimensional image analysis. A novel nondestructive method to evaluate yarn and fabric structural details quantitatively and calculate contact area (in fiber area %) experimentally has been reported in this paper. Plain and satin-woven fabrics with different thread densities and made from 100% cotton ring-spun yarns with two different linear densities (40 and 60 Ne) were investigated in this study. The measurements from the tomographic images (pixel size: 1.13 μm) and the fiber area % analysis were in good agreement to comprehend and compare the yarn and fabric properties reported. The fiber area % as reported in this paper can be used to evaluate the skin-textile interfaces and quantitatively determine the contact area under different physical, mechanical, and microclimatic conditions to understand the actual skin-textile interaction during any physical activity or sports. The proposed method can be helpful in engineering textiles to enhance skin comfort and prevent injuries, such as blisters and pressure ulcers, in diversified application areas, including but not limited to, sports and healthcare apparel, military apparel, and firefighter's protective clothing. In addition, the images were capable of precisely evaluating yarn diameters, crimp %, and packing factor as well as fabric thickness, volumetric densities, and cover factors as compared with those obtained from theoretical evaluation and existing classical test methods. All these findings suggest that the proposed new method can reliably be used to quantify the yarn and fabric characteristics, compare their functionality, and understand the structural impacts in an objective and nondestructive way.}, number={3}, journal={ACS Applied Materials & Interfaces}, publisher={American Chemical Society (ACS)}, author={Baby, R. and Mathur, K. and DenHartog, E.}, year={2021}, pages={4652–4664} } @article{baby_mathur_denhartog_2020, title={Skin-textiles friction: importance and prospects in skin comfort and in healthcare in prevention of skin injuries}, volume={112}, ISSN={0040-5000 1754-2340}, url={http://dx.doi.org/10.1080/00405000.2020.1827582}, DOI={10.1080/00405000.2020.1827582}, abstractNote={Abstract Frictional characteristics of textiles play a big role in skin comfort and health, and in the development of friction related skin injuries such as tissue deformation, skin damage, decubitus ulcers or pressure ulcers and friction blisters, especially in people with compromised skin conditions and/or immobility. All these skin injuries cause severe pain and can be life threatening. This review paper is focused on decubitus, and how friction from textiles contribute to both skin comfort, and in the formation or prevention of skin injuries such as decubitus. More than 2.5 million individuals develop decubitus annually that costs the US healthcare system $9.1-11.6 billion per year due to increased health care utilization. There’s been a significant amount of research on decubitus alone, unfortunately the role of textiles in formation and prevention of decubitus is yet understudied. This review provided an understanding of the importance of friction in textiles and skin, and factors influencing friction on respective surfaces. Along with demonstrating the mechanism of decubitus ulcer formation and some recent commendable work from textiles point of view, few critical research questions and suggestions for future work have also been provided.}, number={9}, journal={The Journal of The Textile Institute}, publisher={Informa UK Limited}, author={Baby, Ruksana and Mathur, Kavita and DenHartog, Emiel}, year={2020}, month={Oct}, pages={1–17} } @article{wu_michielsen_baby_2019, title={Impact Spatter Bloodstain Patterns on Textiles}, volume={64}, ISSN={["1556-4029"]}, url={https://doi.org/10.1111/1556-4029.13951}, DOI={10.1111/1556-4029.13951}, abstractNote={Abstract}, number={3}, journal={JOURNAL OF FORENSIC SCIENCES}, author={Wu, Jiaying and Michielsen, Stephen and Baby, Ruksana}, year={2019}, month={May}, pages={702–710} }