Ryan Bing Manesh, M. J. H., Bing, R. G., Willard, D. J., Adams, M. W. W., & Kelly, R. M. (2024, January 24). Complete genome sequence for the extremely thermophilic bacterium Anaerocellum danielii (DSM:8977) (K. M. Stedman, Ed.). MICROBIOLOGY RESOURCE ANNOUNCEMENTS, Vol. 1. https://doi.org/10.1128/mra.01229-23 Manesh, M. J. H., Bing, R. G., Willard, D. J., & Kelly, R. M. (2024, February 8). Complete genome sequence for the thermoacidophilic archaeon Metallosphaera sedula (DSM:5348). MICROBIOLOGY RESOURCE ANNOUNCEMENTS, Vol. 2. https://doi.org/10.1128/mra.01228-23 Bing, R. G. G., Willard, D. J. J., Manesh, M. J. H., Laemthong, T., Crosby, J. R. R., Adams, M. W. W., & Kelly, R. M. M. (2023, February 1). Complete Genome Sequences of Caldicellulosiruptor acetigenus DSM 7040, Caldicellulosiruptor morganii DSM 8990 (RT8.B8), and Caldicellulosiruptor naganoensis DSM 8991 (NA10). MICROBIOLOGY RESOURCE ANNOUNCEMENTS, Vol. 2. https://doi.org/10.1128/mra.01292-22 Bing, R. G., Willard, D. J., Manesh, M. J. H., Laemthong, T., Crosby, J. R., Adams, M. W. W., & Kelly, R. M. (2023). Complete Genome Sequences of Two Thermophilic Indigenous Bacteria Isolated from Wheat Straw, Thermoclostridium stercorarium subsp. Strain RKWS1 and Thermoanaerobacter sp. Strain RKWS2. MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 12(3). https://doi.org/10.1128/mra.01193-22 Willard, D. J., Manesh, M. J. H., Bing, R. G., & Kelly, R. M. (2023, December 6). Complete genome sequence for the thermoacidophilic archaeon Sulfuracidifex (f. Sulfolobus) metallicus DSM 6482. MICROBIOLOGY RESOURCE ANNOUNCEMENTS, Vol. 12. https://doi.org/10.1128/mra.00981-23 Bing, R. G., Carey, M. J., Laemthong, T., Willard, D. J., Crosby, J. R., Sulis, D. B., … Kelly, R. M. (2023). Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth. BIORESOURCE TECHNOLOGY, 367. https://doi.org/10.1016/j.biortech.2022.128275 Tanwee, T. N. N., Lipscomb, G. L., Vailionis, J. L., Zhang, K., Bing, R. G., Hailey C. O'Quinn, … Adams, M. W. W. (2023, December 22). Metabolic engineering of Caldicellulosiruptor bescii for 2,3-butanediol production from unpretreated lignocellulosic biomass and metabolic strategies for improving yields and titers. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 12. https://doi.org/10.1128/aem.01951-23 Sulis, D. B., Jiang, X., Yang, C., Marques, B. M., Matthews, M. L., Miller, Z., … Wang, J. P. (2023). Multiplex CRISPR editing of wood for sustainable fiber production. SCIENCE, 381(6654), 216-+. https://doi.org/10.1126/science.add4514 Vailionis, J. L., Zhao, W., Zhang, K., Rodionov, D. A., Lipscomb, G. L., Tanwee, T. N. N., … Zhang, Y. (2023, June 8). Optimizing Strategies for Bio-Based Ethanol Production Using Genome-Scale Metabolic Modeling of the Hyperthermophilic Archaeon, Pyrococcus furiosus. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 6. https://doi.org/10.1128/aem.00563-23 Laemthong, T., Bing, R. G., Crosby, J. R., Manesh, M. J. H., Adams, M. W. W., & Kelly, R. M. (2023). Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. EXTREMOPHILES, 27(1). https://doi.org/10.1007/s00792-023-01290-7 Bing, R. G. G., Willard, D. J. J., Crosby, J. R. R., Adams, M. W. W., & Kelly, R. M. M. (2023). Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype. FRONTIERS IN MICROBIOLOGY, 14. https://doi.org/10.3389/fmicb.2023.1212538 Bing, R. G., Straub, C. T., Sulis, D. B., Wang, J. P., Adams, M. W. W., & Kelly, R. M. (2022).

Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis

. BIORESOURCE TECHNOLOGY, 348. https://doi.org/10.1016/j.biortech.2022.126780 Crosby, J. R., Laemthong, T., Bing, R. G., Zhang, K., Tanwee, T. N. N., Lipscomb, G. L., … Kelly, R. M. (2022, October 11). Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 10. https://doi.org/10.1128/aem.01302-22 Laemthong, T., Bing, R. G., Crosby, J. R., Adams, M. W. W., & Kelly, R. M. (2022, September 28). Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Vol. 9. https://doi.org/10.1128/aem.01274-22 Rodionov, D. A., Rodionova, I. A., Rodionov, V. A., Arzamasov, A. A., Zhang, K., Rubinstein, G. M., … Adams, M. W. W. (2021). Genome-Scale Metabolic Model of Caldicellulosiruptor bescii Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. MSystems, 6(3). https://doi.org/10.1128/mSystems.01351-20 Bing, R. G., Sulis, D. B., Wang, J. P., Adams, M. W. W., & Kelly, R. M. (2021). Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. Environmental Microbiology Reports, 13(3), 272–293. https://doi.org/10.1111/1758-2229.12943 Straub, C. T., Bing, R. G., Otten, J. K., Keller, L. M., Zeldes, B. M., Adams, M. W. W., & Kelly, R. M. (2020). Metabolically engineeredCaldicellulosiruptor besciias a platform for producing acetone and hydrogen from lignocellulose. BIOTECHNOLOGY AND BIOENGINEERING, 117(12), 3799–3808. https://doi.org/10.1002/bit.27529 Lee, L. L., Crosby, J. R., Rubinstein, G. M., Laemthong, T., Bing, R. G., Straub, C. T., … Kelly, R. M. (2020, January). The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in 'Caldi World'. EXTREMOPHILES, Vol. 24, pp. 1–15. https://doi.org/10.1007/s00792-019-01116-5 Straub, C. T., Bing, R. G., Wang, J. P., Chiang, V. L., Adams, M. W. W., & Kelly, R. M. (2020). Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar. BIOTECHNOLOGY FOR BIOFUELS, 13(1). https://doi.org/10.1186/s13068-020-01675-2