@article{grieshaber_cope_kwak_penland_heise_mac law_2021, title={Survival and Contaminants in Imperiled and Common Riverine Fishes Assessed with an In Situ Bioassay Approach}, volume={40}, DOI={10.1002/etc.5104}, abstractNote={AbstractAn in situ bioassay approach was used to determine whether aquatic contaminant stressors in a large Atlantic river ecosystem affect the survival of 3 fish species: the largemouth bass (Micropterus salmoides, juveniles), the fathead minnow (Pimephales promelas, adults), and the robust redhorse (Moxostoma robustum, juveniles). Hatchery‐propagated fish were placed into cages to assess site‐specific survival in the Yadkin‐Pee Dee River of North Carolina and South Carolina, USA. Contaminants were measured in caged fish and sediment and surface water at each site. No apparent longitudinal trends in fish survival were detected, and contaminant concentrations varied among sites. Juvenile largemouth bass and robust redhorse did not survive past 13 and 23 d, with corresponding Kaplan‐Meier median survival estimates of 9.7 and 12.1 d, respectively. Survival of adult fathead minnows deployed in cages alongside the juvenile fish averaged 43% at the end of the 28‐d exposure, with a 22‐d median survival estimate. The intersex condition, an indicator of endocrine disruption, was not observed in any adult fathead minnow. Contaminant accumulation in surviving fathead minnows was apparent, with highest accumulated concentrations of polychlorinated biphenyls (34.6–93.4 ng/g dry wt), organochlorine pesticides (19.9–66.1 ng/g dry wt), and mercury (0.17–0.63 μg/g dry wt). Contaminants and other water quality stressors in this river system appear to detrimentally impact juvenile fish survival, with presumed effects at the fish assemblage and community levels. Environ Toxicol Chem 2021;40:2206–2219. © 2021 SETAC}, number={8}, journal={ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY}, author={Grieshaber, Casey A. and Cope, W. Gregory and Kwak, Thomas J. and Penland, Tiffany N. and Heise, Ryan J. and Mac Law, J.}, year={2021}, month={Jun}, pages={2206–2219} } @article{penland_grieshaber_kwak_cope_heise_sessions_2018, title={Food web contaminant dynamics of a large Atlantic Slope river: Implications for common and imperiled species}, volume={633}, ISSN={["1879-1026"]}, DOI={10.1016/j.scitotenv.2018.03.251}, abstractNote={Persistent and bioaccumulative contaminants often reach concentrations that threaten aquatic life by causing alterations in organism behavior and development, disruption of biological processes, reproductive abnormalities, and mortality. The objectives of this research were to determine the aquatic food web structure and trophic transfer and accumulation of contaminants within a riverine ecosystem and identify potential stressors to the health of an imperiled fish, the robust redhorse (Moxostoma robustum) and other species of conservation concern in a large Atlantic Slope (USA) river. Trophic position was determined for food web taxa by stable isotope analyses of representative producers, consumers, and organic matter of the Yadkin-Pee Dee River of North Carolina and South Carolina. Contaminant analyses were performed on water, sediment, organic matter, and aquatic biota to assess the prevalence and accumulation of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), current use pesticides (CUPs), polycyclic aromatic hydrocarbons (PAHs), and selected metals. Contaminants were prevalent in the environment and food web components of the river. PCBs were detected in 32% of biotic samples (mean 0.24μg/g dry weight [DW], range 0.01-3.33μg/g DW), and DDTs (legacy OCPs and metabolites) were detected in 90% (mean 0.014μg/g DW, range 0.0004-0.29μg/g DW). The trace metals manganese and cadmium exceeded published threshold effect concentrations in sediment (460 and 0.99μg/g DW, respectively). Mercury was detected in all food web samples exhibiting a mean of 0.61μg/g DW and range 0.006-2.35μg/g DW (mean 0.13μg/g wet weight [WW], range 0.001-0.6μg/g WW). Concentrations exceeded the 0.2μg/g WW aquatic life criterion for mercury in 38% of fish samples. Fish trophic magnification factors (TMFs; range 0.33-3.75) indicated that contaminant accumulation occurred from both water and dietary sources. The combination of analytical approaches applied here provides new insight into contaminant dynamics with conservation implications.}, journal={SCIENCE OF THE TOTAL ENVIRONMENT}, author={Penland, Tiffany N. and Grieshaber, Casey A. and Kwak, Thomas J. and Cope, W. Gregory and Heise, Ryan J. and Sessions, Forrest W.}, year={2018}, month={Aug}, pages={1062–1077} } @article{grieshaber_penland_kwak_cope_heise_law_shea_aday_rice_kullman_et al._2018, title={Relation of contaminants to fish intersex in riverine sport fishes}, volume={643}, ISSN={0048-9697}, url={http://dx.doi.org/10.1016/J.SCITOTENV.2018.06.071}, DOI={10.1016/j.scitotenv.2018.06.071}, abstractNote={Endocrine active compounds (EACs) are pollutants that have been recognized as an emerging and widespread threat to aquatic ecosystems globally. Intersex, the presence of female germ cells within a predominantly male gonad, is considered a biomarker of endocrine disruption caused by EACs. We measured a suite of EACs and assessed their associated impacts on fish intersex occurrence and severity in a large, regulated river system in North Carolina and South Carolina, USA. Our specific objective was to determine the relationship of contaminants in water, sediment, and fish tissue with the occurrence and severity of the intersex condition in wild, adult black bass (Micropterus), sunfish (Lepomis), and catfish (Ictaluridae) species at 11 sites located on the Yadkin-Pee Dee River. Polycyclic aromatic hydrocarbons (PAHs), ethinylestradiol (EE2), and heavy metals were the most prevalent contaminants that exceeded effect levels for the protection of aquatic organisms. Fish intersex condition was most frequently observed and most severe in black basses and was less frequently detected and less severe in sunfishes and catfishes. The occurrence of the intersex condition in fish showed site-related effects, rather than increasing longitudinal trends from upstream to downstream. Mean black bass and catfish tissue contaminant concentrations were higher than that of sunfish, likely because of the latter's lower trophic position in the food web. Principal component analysis identified waterborne PAHs as the most correlated environmental contaminant with intersex occurrence and severity in black bass and sunfish. As indicated by the intersex condition, EACs have adverse but often variable effects on the health of wild sport fishes in this river, likely due to fluctuations in EAC inputs and the dynamic nature of the riverine system. These findings enhance the understanding of the relationship between contaminants and fish health and provide information to guide ecologically comprehensive conservation and management decisions.}, journal={Science of The Total Environment}, publisher={Elsevier BV}, author={Grieshaber, C.A. and Penland, T.N. and Kwak, T.J. and Cope, W.G. and Heise, R.J. and Law, J.M. and Shea, Damian and Aday, D.D. and Rice, J.A. and Kullman, S.W. and et al.}, year={2018}, month={Dec}, pages={73–89} } @article{fisk_kwak_heise_sessions_2013, title={REDD DEWATERING EFFECTS ON HATCHING AND LARVAL SURVIVAL OF THE ROBUST REDHORSE}, volume={29}, ISSN={["1535-1467"]}, DOI={10.1002/rra.2561}, abstractNote={ABSTRACTRiverine habitats have been altered and fragmented from hydroelectric dams and change spatially and temporally with hydropower flow releases. Hydropeaking flow regimes for electrical power production inundate areas that create temporary suitable habitat for fish that may be rapidly drained. Robust redhorse Moxostoma robustum, an imperiled, rare fish species, uses such temporary habitats to spawn, but when power generation ceases, these areas are dewatered until the next pulse of water is released. We experimentally simulated the effects of dewatering periods on the survival of robust redhorse eggs and larvae in the laboratory. Robust redhorse eggs were placed in gravel in eyeing‐hatching jars (three jars per treatment) and subjected to one of four dewatering periods (6, 12, 24 and 48 h), followed by 12 h of inundation for each treatment, and a control treatment was never dewatered. Egg desiccation was observed in some eggs in the 24‐ and 48‐h treatments after one dewatering period. For all treatments except the control, the subsequent dewatering period after eggs hatched was lethal. Larval emergence for the control treatment was observed on day 5 post‐hatching and continued until the end of the experiment (day 21). Larval survival was significantly different between the control and all dewatering treatments for individuals in the gravel. These findings support the need for hydropower facilities to set minimum flows to maintain inundation of spawning areas for robust redhorse and other species to reduce dewatering mortality. Copyright © 2012 John Wiley & Sons, Ltd.}, number={5}, journal={RIVER RESEARCH AND APPLICATIONS}, author={Fisk, J. M., II and Kwak, T. J. and Heise, R. J. and Sessions, F. W.}, year={2013}, month={Jun}, pages={574–581} }