@article{elfering_metoyer_chatterjee_mazzoleni_bryant_granlund_2023, title={Blade element momentum theory for a skewed coaxial turbine}, volume={269}, ISSN={["1873-5258"]}, url={https://doi.org/10.1016/j.oceaneng.2022.113555}, DOI={10.1016/j.oceaneng.2022.113555}, abstractNote={A coaxial turbine under skew with significant rotor spacing has the potential for increased power output compared to a flow-aligned turbine due to a portion of the downstream rotor experiencing freestream velocity, referred to as a fresh flow region. A lab-scale prototype was designed and built to investigate the skew-to-power relationship of a coaxial turbine system as it compared to a blade element momentum theory model with multiple, sheared streamtubes representing the downstream rotor fresh flow region. The inclusion of the downstream rotor fresh flow region in the theoretical analysis is compared to the experimental data. The results support that the torque and power performance of the downstream rotor and overall skewed coaxial turbine system are predicted more accurately.}, journal={OCEAN ENGINEERING}, author={Elfering, Kelsey and Metoyer, Rodney and Chatterjee, Punnag and Mazzoleni, Andre and Bryant, Matthew and Granlund, Kenneth}, year={2023}, month={Feb} } @article{metoyer_bryant_granlundt_mazzoleni_2022, title={Increased Energy Conversion with a Horizontal Axis Turbine in Translation}, ISBN={["978-1-6654-6809-1"]}, ISSN={["0197-7385"]}, DOI={10.1109/OCEANS47191.2022.9977131}, abstractNote={When fixed to the ground by tower or stanchion, horizontal axis turbines convert hydrokinetic power into electric power by passively exploiting the difference in velocity between the ground and a flowing fluid. This method of converting the available hydrokinetic power is relatively simple, but the maximum amount of power that may be converted to another form by the turbine has a theoretical upper limit, called the Betz limit, which is about 59.25% of the hydrokinetic power in a stream tube of the freestream flow with a cross sectional area equal to the area of the turbine rotor plane. The work presented demonstrates that eschewing the stanchion and making the turbine to translate through the fluid enables conversion of more hydrokinetic power and, when operated in a cyclical mode, more energy over a cycle. It is demonstrated with momentum theory that the maximum energy that may be converted over a cycle is 1.5 times the Betz limit for an equivalent ground-fixed stationary turbine in the same low. Following the theoretical analysis, the concept is proven by simulation for a non-ideal turbine using an engineering design tool developed by the United States National Renewable Energy Laboratory. The results show that a realistic, non-ideal translating turbine can convert over twice as much power as an equivalent stationary turbine. Additionally, a notional tidal current application is presented where the bidirectionality of flow is exploited to achieve energy conversion of more than twice the theoretical limit of an ideal stationary turbine.}, journal={2022 OCEANS HAMPTON ROADS}, author={Metoyer, Rodney and Bryant, Matthew and Granlundt, Kenneth and Mazzoleni, Andre}, year={2022} } @article{metoyer_chatterjee_elfering_bryant_granlund_mazzoleni_2021, title={Modeling, simulation, and equilibrium analysis of tethered coaxial dual-rotor ocean current turbines}, volume={243}, ISSN={["1879-2227"]}, DOI={10.1016/j.enconman.2021.113929}, abstractNote={Tethered multirotor axial flow turbines have been proposed to overcome the many challenges associated with extracting ocean current energy where deep waters render seabed mounting strategies infeasible. However, flexible systems are inherently more susceptible to perturbation than fixed systems. The effects of flow misalignment on the hydrokinetic energy conversion of multirotor coaxial turbines have been investigated recently; however, the spatial dynamics and equilibrium behaviors of tethered coaxial turbines have not been well characterized, limiting the ability of designers to explicitly tailor the device behavior. In this work, a computational model of a dual-rotor coaxial turbine is presented, and the model is employed to explore the equilibrium behavior of the turbine with variations in parameters. A complete characterization of the hydrostatic state of the system and a comparative study of representative tethered turbine simulation cases is also presented. Two important findings are presented. First, that a positively buoyant dual-rotor turbine that is anchored to a surface-dwelling platform can operate where the turbine is located at some desired depth below the surface. Second, that more than one turbine system may be anchored to a single point while maintaining the desired orientation and position of each turbine to avoid collision and maximize energy production. The results and methods presented in this paper may be used to inform application-specific coaxial turbine design and to develop additional targeted empirical and simulation studies.}, journal={ENERGY CONVERSION AND MANAGEMENT}, author={Metoyer, Rodney and Chatterjee, Punnag and Elfering, Kelsey and Bryant, Matthew and Granlund, Kenneth and Mazzoleni, Andre}, year={2021}, month={Sep} } @article{khatri_chatterjee_metoyer_mazzoleni_bryant_granlund_2019, title={Dual-Actuator Disc Theory for Turbines in Yaw}, volume={57}, ISSN={["1533-385X"]}, DOI={10.2514/1.J057740}, abstractNote={No AccessTechnical NotesDual-Actuator Disc Theory for Turbines in YawDheepak N. Khatri, Punnag Chatterjee, Rodney Metoyer, Andre P. Mazzoleni, Matthew Bryant and Kenneth O. GranlundDheepak N. KhatriNorth Carolina State University, Raleigh, North Carolina 27695*Graduate Research Assistant, Department of Mechanical and Aerospace Engineering.Search for more papers by this author, Punnag ChatterjeeNorth Carolina State University, Raleigh, North Carolina 27695*Graduate Research Assistant, Department of Mechanical and Aerospace Engineering.Search for more papers by this author, Rodney MetoyerNorth Carolina State University, Raleigh, North Carolina 27695*Graduate Research Assistant, Department of Mechanical and Aerospace Engineering.Search for more papers by this author, Andre P. MazzoleniNorth Carolina State University, Raleigh, North Carolina 27695†Associate Professor, Department of Mechanical and Aerospace Engineering. Associate Fellow AIAA.Search for more papers by this author, Matthew BryantNorth Carolina State University, Raleigh, North Carolina 27695‡Assistant Professor, Department of Mechanical and Aerospace Engineering.Search for more papers by this author and Kenneth O. GranlundNorth Carolina State University, Raleigh, North Carolina 27695§Assistant Professor, Department of Mechanical and Aerospace Engineering. Senior Member AIAA.Search for more papers by this authorPublished Online:23 Jan 2019https://doi.org/10.2514/1.J057740SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Betz A., “Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren,” Zeitschrift für das gesamte Turbinenwesen, 1920, pp. 26, 307–309. Google Scholar[2] Newman B. G., “Actuator Disc Theory for Vertical Wind Turbines,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 15, Nos. 1–3, 1983, pp. 347–355. doi:https://doi.org/10.1016/0167-6105(83)90204-0 JWEAD6 0167-6105 CrossrefGoogle Scholar[3] Rosenberg A., Selvaraj S. and Sharma A., “A Novel Dual-Rotor Turbine for Increased Wind Energy Capture,” Journal of Physics: Conference Series, Vol. 524, 2014, Paper 012078. doi:https://doi.org/10.1088/1742-6596/524/1/012078 JPCSDZ 1742-6588 CrossrefGoogle Scholar[4] Adams Z. and Chen J., “Flux-Line Theory: A Novel Analytical Model for Cycloturbines,” AIAA Journal, Vol. 55, No. 11, 2017, pp. 3851–3867. doi:https://doi.org/10.2514/1.J055804 AIAJAH 0001-1452 LinkGoogle Scholar[5] Anderson M., “Horizontal Axis Wind Turbines in Yaw,” Proceedings of the First British Wind Energy Association (BWEA) Wind Energy Workshop, 1979, pp. 57–67, http://adsabs.harvard.edu/abs/1979wien.work...57A. Google Scholar[6] Grant I., Parkin P. and Wang X., “Optical Vortex Tracking Studies of a Horizontal Axis Wind Turbine in Yaw Using Laser-Sheet, Flow Visualization,” Experiments in Fluids, Vol. 23, No. 6, 1997, pp. 513–519. doi:https://doi.org/10.1007/s003480050142 EXFLDU 0723-4864 CrossrefGoogle Scholar[7] Newman B. G., “Multiple Actuator Disc Theory for Wind Turbines,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 24, No. 3, 1986, pp. 215–225. doi:https://doi.org/10.1016/0167-6105(86)90023-1 JWEAD6 0167-6105 CrossrefGoogle Scholar[8] Howland M., Bossuyt J., Martinez-Tossas L., Meyers J. and Meneveau C., “Wake Structure in Actuator Disk Models of Wind Turbines in Yaw Under Uniform Inflow Conditions,” Journal of Renewable and Sustainable Energy, Vol. 8, No. 4, 2016, Paper 043301. doi:https://doi.org/10.1063/1.4955091 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byPool-Based Tow System for Testing Tethered Hydrokinetic Devices Being Developed to Harvest Energy From Ocean CurrentsMarine Technology Society Journal, Vol. 57, No. 1Blade element momentum theory for a skewed coaxial turbineOcean Engineering, Vol. 269Closed-Loop-Flight-Based Combined Geometric and Structural Wing Design optimization Framework for a Marine Hydrokinetic Energy KiteDemonstration of a Towed Coaxial Turbine Subscale Prototype for Hydrokinetic Energy Harvesting in SkewCharacterization of the Steady-State Operating Conditions of Tethered Coaxial TurbinesIncreased Energy Conversion with a Horizontal Axis Turbine in TranslationModeling, simulation, and equilibrium analysis of tethered coaxial dual-rotor ocean current turbinesEnergy Conversion and Management, Vol. 243Experimental analysis of dual coaxial turbines in skewOcean Engineering, Vol. 215 What's Popular Volume 57, Number 5May 2019 CrossmarkInformationCopyright © 2018 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsConservation of Momentum EquationsEnergyEnergy FormsEnergy Forms, Production and ConversionEquations of Fluid DynamicsFlow RegimesFluid DynamicsFluid Flow PropertiesTurbinesTurbomachineryWind EngineeringWind Turbine KeywordsTurbinesYawConservation of MassHorizontal Axis TurbineFree Stream VelocityConservation EquationsTwo Dimensional FlowNavier Stokes EquationsKinetic EnergyFluid DensityAcknowledgmentsThis work was funded by a grant from the North Carolina Coastal Studies Institute. The authors would like to thank undergraduate research assistants Tyler Farr and Kyle Weiner for their contributions to these results.PDF Received27 August 2018Accepted2 December 2018Published online23 January 2019}, number={5}, journal={AIAA JOURNAL}, author={Khatri, Dheepak N. and Chatterjee, Punnag and Metoyer, Rodney and Mazzoleni, Andre P. and Bryant, Matthew and Granlund, Kenneth O.}, year={2019}, month={May}, pages={2204–2208} }