@article{orenstein_li_dirican_cheng_chang_yanilmaz_yan_zhang_2024, title={A Comparatively Low Cost, Easy-To-Fabricate, and Environmentally Friendly PVDF/Garnet Composite Solid Electrolyte for Use in Lithium Metal Cells Paired with Lithium Iron Phosphate and Silicon}, volume={6}, ISSN={["1944-8252"]}, url={https://doi.org/10.1021/acsami.4c04145}, DOI={10.1021/acsami.4c04145}, abstractNote={Solid electrolytes may be the answer to overcome many obstacles in developing the next generation of renewable batteries. A novel composite solid electrolyte (CSE) composed of a poly(vinylidene fluoride) (PVDF) base with an active nanofiber filler of aluminum-doped garnet Li ceramic, Li salt lithium}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Orenstein, Raphael and Li, Zezhao and Dirican, Mahmut and Cheng, Hui and Chang, Liang and Yanilmaz, Meltem and Yan, Chaoyi and Zhang, Xiangwu}, year={2024}, month={Jun} } @article{cheng_yan_chang_dirican_orenstein_zhang_2024, title={Garnet-Type Composite Polymer Electrolyte for Room-Temperature All-Solid-State Li-S Battery}, volume={4}, ISSN={["2574-0962"]}, url={https://doi.org/10.1021/acsaem.3c02920}, DOI={10.1021/acsaem.3c02920}, abstractNote={Lithium–sulfur (Li–S) batteries hold significant promise as rechargeable energy storage systems due to their exceptionally high theoretical specific capacity and energy density. However, the widespread adoption of Li–S batteries has been impeded by challenges such as the diffusion of long-chain polysulfides and the formation of lithium dendrites when organic liquid electrolytes. To address these problems, a composite polymer electrolyte reinforced with Li6.28La3Al0.24Zr2O12 nanofiber (LLAZO NF) was developed. This electrolyte, featuring a garnet nanofiber filler within a PEO-based polymer system, exhibited superior ionic conductivity. The well-interconnected organic–inorganic network facilitated rapid and uninterrupted pathways for lithium-ion conduction, achieving a high Li-ion transference number. The incorporation of LLAZO NFs not only enhanced the electrochemical stability and mechanical properties of the composite polymer electrolyte, effectively mitigating lithium dendrite formation, but also contributed to the suppression of polysulfide diffusion during cycling. As a result, the all-solid-state Li–S battery utilizing this garnet-type composite polymer electrolyte demonstrated robust cycling stability and excellent rate performance at room temperature.}, journal={ACS APPLIED ENERGY MATERIALS}, author={Cheng, Hui and Yan, Chaoyi and Chang, Liang and Dirican, Mahmut and Orenstein, Raphael and Zhang, Xiangwu}, year={2024}, month={Apr} } @article{cheng_yan_orenstein_chang_zhang_2024, title={Li6.28La3Zr2Al0.24O12-reinforced Single-ion Conducting Composite Polymer Electrolyte for Room-Temperature Li-Metal Batteries}, volume={171}, ISSN={["1945-7111"]}, url={https://doi.org/10.1149/1945-7111/ad377d}, DOI={10.1149/1945-7111/ad377d}, abstractNote={Composite polymer electrolytes composed of inorganic fillers and organic polymers are promising electrolyte candidates for Li metal batteries, with benefits of improved safety and suppressed lithium dendrite growth. However, a severe concentration polarization effect often occurs when using conventional dual-ion electrolytes, and the increase in internal impedance during cycling results in decreased lifespan of the battery. To address this challenge, a plasticized single-ion conducting composite polymer electrolyte (SICE) was designed and fabricated by polymerizing the monomers of lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide (LiSTFSI) and poly(ethylene glycol) methyl ether acrylate (PEGMEA), crosslinker poly(ethylene glycol) diacrylate (PEGDA), silane-modified Li6.28La3Al0.24Zr2O12 nanofibers (s@LLAZO NFs), along with a PEG-based plasticizer tetraethylene glycol dimethyl ether (TEGDME), by heat-initiation. The anions were restrained and delocalized so that only Li cation migration occurred during the charging/discharging process, leading to a superior lithium-ion transference number. The s@LLAZO NFs enabled direct monomer grafting with the polymer matrix, resulting in controlled formation of an organic-inorganic network with increased filler content and improved filler distribution in the SICE system. The SICE membrane exhibited high ionic conductivity at room temperature, reduced activation energy and excellent oxidation stability. Most importantly, the all-solid-state Li-metal batteries assembled with the fabricated SICE demonstrated stable long-term cycling performance and remarkable rate capability at room temperature.}, number={4}, journal={JOURNAL OF THE ELECTROCHEMICAL SOCIETY}, author={Cheng, Hui and Yan, Chaoyi and Orenstein, Raphael and Chang, Liang and Zhang, Xiangwu}, year={2024}, month={Apr} } @article{zhang_chen_orenstein_lu_wang_yanilmaz_peng_dong_liu_zhang_2024, title={Zincophilic and hydrophobic groups of surfactant-type electrolyte additive enabled stable anode/electrolyte interface toward long-lifespan aqueous zinc ion batteries}, volume={70}, ISSN={["2405-8289"]}, DOI={10.1016/j.ensm.2024.103500}, abstractNote={Rechargeable aqueous zinc-ion batteries, while promising in terms of safety, cost-effectiveness, and eco-friendliness, face challenges such as zinc dendrite growth and parasitic reactions at the anode/electrolyte interface. Herein, a low-cost cationic surfactant, dodecyltrimethyl ammonium chloride (DTAC) is deployed as a competitive additive in traditional ZnSO4 electrolyte to stabilize the zinc anode. Firstly, the DTAC additive disrupts the hydrogen bonding network and regulates the solvation structure. Secondly, the DTA+ cations preferentially adsorb onto the anode surface vertically, forming a dodecyl chain hydrophobic layer that suppresses the side reactions. Thirdly, the hydrophobic layer not only elevates the nucleation overpotential of Zn2+ ions but also limits their 2D diffusion at the anode surface, triggering oriented deposition of metal zinc and inhibiting dendrite growth. Leveraging these triple-regulation effects, the Zn//Zn symmetric cell with DTAC additives achieves an ultra-long cycle life of 2000 hours at a current density of 1 mA cm−2 with 1 mAh cm−2. Furthermore, the Zn//MnO2 full cell with DTAC additive demonstrates promising performance, delivering an initial capacity of 149.44 mAh g−1 at 5 A g−1 and retaining 83.02% of its capacity after 2000 cycles. These results underscore the potential of DTAC additives in advancing the industrialization of AZIBs.}, journal={ENERGY STORAGE MATERIALS}, author={Zhang, Xiaoliang and Chen, Lei and Orenstein, Raphael and Lu, Xiaojie and Wang, Chunxia and Yanilmaz, Meltem and Peng, Mao and Dong, Yongchun and Liu, Yong and Zhang, Xiangwu}, year={2024}, month={Jun} } @article{chen_yuan_orenstein_yanilmaz_he_liu_liu_zhang_2023, title={Carbon materials dedicate to bendable supports for flexible lithium-sulfur batteries}, volume={60}, ISSN={["2405-8289"]}, url={https://doi.org/10.1016/j.ensm.2023.102817}, DOI={10.1016/j.ensm.2023.102817}, abstractNote={As a new energy storage device, lithium-sulfur battery (LSB) has a sulfur cathode with a much higher theoretical specific capacity (1675 mAh g−1) and energy density (2600 Wh kg−1) compared with current lithium-ion batteries, making it a promising candidate for the next generation of energy storage devices. In recent years, the emergence of wearable electronic devices and smart textiles has placed a new demand on energy storage batteries - flexibility. Carbon materials, namely carbon fibers and several carbon nanomaterials (such as carbon nanotubes, graphene, carbon nanofibers, porous carbon skeletons, and their derivatives) possess remarkable structural and functional adjustability, and are thus well suited for building components of flexible LSBs. These components include current collectors, interlayers, solid electrolytes and anodes. This paper systematically reviews research progress in carbon materials used in different components of flexible LSBs, including the sulfur cathode, interlayer, lithium anode, and dual-functional host carbon materials that can be used as both cathode and anode. Additionally, the relationship between the processing and modification methods and the carbon materials’ structure, flexibility, and electrochemical properties is described. Finally, the problems of flexible LSBs based on carbon materials are analyzed, and the future development trend is delineated, in a part, respectively.}, journal={ENERGY STORAGE MATERIALS}, author={Chen, Lei and Yuan, Yehui and Orenstein, Raphael and Yanilmaz, Meltem and He, Jin and Liu, Jian and Liu, Yong and Zhang, Xiangwu}, year={2023}, month={Jun} } @article{cao_ma_luo_chen_cheng_orenstein_zhang_2023, title={Nanofiber Materials for Lithium-Ion Batteries}, volume={3}, ISSN={["2524-793X"]}, url={https://doi.org/10.1007/s42765-023-00278-4}, DOI={10.1007/s42765-023-00278-4}, journal={ADVANCED FIBER MATERIALS}, author={Cao, Xinwang and Ma, Chang and Luo, Lei and Chen, Lei and Cheng, Hui and Orenstein, Raphael Simha and Zhang, Xiangwu}, year={2023}, month={Mar} } @article{yan_zhou_cheng_orenstein_zhu_yildiz_bradford_jur_wu_dirican_et al._2022, title={Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery}, volume={44}, ISSN={["2405-8297"]}, DOI={10.1016/j.ensm.2021.10.014}, abstractNote={All-solid-state lithium (Li) batteries with high energy density are a promising solution for the next-generation energy storage systems in large-scale devices. To simultaneously overcome the challenges of poor ionic conduction of solid electrolytes and shuttling of active materials, we introduce a functional electrolyte-cathode bilayer framework with interconnected LLAZO channels from the electrolyte into the cathode for advanced solid-state Li-S batteries. Differing from the traditional solid-state batteries with separated layer compositions, the introduced bilayer framework provides ultrafast and continuous ion/electron conduction. Instead of transferring Li+ across the polymer and garnet phases which involve huge interfacial resistance, Li+ is directly conducted through the LLAZO channels created continuously from the cathode layer to the solid electrolyte layer, significantly shortening the diffusion distance and facilitating the redox reaction of sulfur and sulfides. A stable cycle life is demonstrated in the prototype Li-S solid-state batteries assembled with the introduced [email protected] interconnected bilayer framework. High capacity is obtained at room temperature, indicating the superior electrochemical properties of the bilayer framework that result from the unique design of the interconnected LLAZO garnet phase.}, journal={ENERGY STORAGE MATERIALS}, author={Yan, Chaoyi and Zhou, Ying and Cheng, Hui and Orenstein, Raphael and Zhu, Pei and Yildiz, Ozkan and Bradford, Philip and Jur, Jesse and Wu, Nianqiang and Dirican, Mahmut and et al.}, year={2022}, month={Jan}, pages={136–144} } @article{cheng_yan_orenstein_dirican_wei_subjalearndee_zhang_2022, title={Polyacrylonitrile Nanofiber-Reinforced Flexible Single-Ion Conducting Polymer Electrolyte for High-Performance, Room-Temperature All-Solid-State Li-Metal Batteries}, volume={4}, ISSN={["2524-793X"]}, url={https://doi.org/10.1007/s42765-021-00128-1}, DOI={10.1007/s42765-021-00128-1}, number={3}, journal={ADVANCED FIBER MATERIALS}, publisher={Springer Science and Business Media LLC}, author={Cheng, Hui and Yan, Chaoyi and Orenstein, Raphael and Dirican, Mahmut and Wei, Shuzhen and Subjalearndee, Nakarin and Zhang, Xiangwu}, year={2022}, month={Jan} }