@article{lee_hossain_jamalzadegan_liu_wang_saville_shymanovich_paul_rotenberg_whitfield_et al._2023, title={Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring}, volume={9}, ISSN={["2375-2548"]}, DOI={10.1126/sciadv.ade2232}, abstractNote={Wearable plant sensors hold tremendous potential for smart agriculture. We report a lower leaf surface-attached multimodal wearable sensor for continuous monitoring of plant physiology by tracking both biochemical and biophysical signals of the plant and its microenvironment. Sensors for detecting volatile organic compounds (VOCs), temperature, and humidity are integrated into a single platform. The abaxial leaf attachment position is selected on the basis of the stomata density to improve the sensor signal strength. This versatile platform enables various stress monitoring applications, ranging from tracking plant water loss to early detection of plant pathogens. A machine learning model was also developed to analyze multichannel sensor data for quantitative detection of tomato spotted wilt virus as early as 4 days after inoculation. The model also evaluates different sensor combinations for early disease detection and predicts that minimally three sensors are required including the VOC sensors.}, number={15}, journal={SCIENCE ADVANCES}, author={Lee, Giwon and Hossain, Oindrila and Jamalzadegan, Sina and Liu, Yuxuan and Wang, Hongyu and Saville, Amanda C. and Shymanovich, Tatsiana and Paul, Rajesh and Rotenberg, Dorith and Whitfield, Anna E. and et al.}, year={2023}, month={Apr} } @misc{jabeen_biswas_islam_paul_2023, title={Antiviral Peptides in Antimicrobial Surface Coatings-From Current Techniques to Potential Applications}, volume={15}, ISSN={["1999-4915"]}, DOI={10.3390/v15030640}, abstractNote={The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.}, number={3}, journal={VIRUSES-BASEL}, author={Jabeen, Mahe and Biswas, Payel and Islam, Md Touhidul and Paul, Rajesh}, year={2023}, month={Mar} } @article{paul_ostermann_chen_saville_yang_gu_whitfield_ristaino_wei_2021, title={Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases}, volume={187}, ISSN={["1873-4235"]}, url={https://doi.org/10.1016/j.bios.2021.113312}, DOI={10.1016/j.bios.2021.113312}, abstractNote={We demonstrate an integrated microneedle (MN)-smartphone nucleic acid amplification platform for “sample-to-answer” diagnosis of multiplexed plant pathogens within 30 min. This portable system consists of a polymeric MN patch for rapid nucleic acid extraction within a minute and a 3D-printed smartphone imaging device for loop-mediated isothermal amplification (LAMP) reaction and detection. We expanded the extraction of the MN technology for DNA targets as in the previous study (ACS Nano, 2019, 13, 6540–6549) to more fragile RNA biomarkers, evaluated the storability of the extracted nucleic acid samples on MN surfaces, and developed a smartphone-based LAMP amplification and fluorescent reader device that can quantify four LAMP reactions on the same chip. In addition, we have found that the MN patch containing as few as a single needle tip successfully extracted enough RNA for RT-PCR or RT-LAMP analysis. Moreover, MN-extracted RNA samples remained stable on MN surfaces for up to three days. The MN-smartphone platform has been used to detect both Phytophthora infestans DNA and tomato spotted wilt virus (TSWV) RNA down to 1 pg, comparable to the results from a benchtop thermal cycler. Finally, multiplexed detection of P. infestans and TSWV through a single extraction from infected tomato leaves and amplification on the smartphone without benchtop equipment was demonstrated.}, journal={BIOSENSORS & BIOELECTRONICS}, publisher={Elsevier BV}, author={Paul, Rajesh and Ostermann, Emily and Chen, Yuting and Saville, Amanda C. and Yang, Yuming and Gu, Zhen and Whitfield, Anna E. and Ristaino, Jean B. and Wei, Qingshan}, year={2021}, month={Sep} } @article{li_liu_hossain_paul_yao_wu_ristaino_zhu_wei_2021, title={Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor}, volume={4}, ISSN={["2590-2385"]}, DOI={10.1016/j.matt.2021.06.009}, abstractNote={Determination of plant stresses such as infections by plant pathogens is currently dependent on time-consuming and complicated analytical technologies. Here, we report a leaf-attachable chemiresistive sensor array for real-time fingerprinting of volatile organic compounds (VOCs) that permits noninvasive and early diagnosis of plant diseases, such as late blight caused by Phytophthora infestans. The imperceptible sensor patch integrates an array of graphene-based sensing materials and flexible silver nanowire electrodes on a kirigami-inspired stretchable substrate, which can minimize strain interference. The sensor patch has been mounted on live tomato plants to profile key plant volatiles at low-ppm concentrations with fast response (<20 s). The multiplexed sensor array allows for accurate detection and classification of 13 individual plant volatiles with >97% classification accuracy. The wearable sensor patch was used to diagnose tomato late blight as early as 4 days post inoculation and abiotic stresses such as mechanical damage within 1 h.}, number={7}, journal={MATTER}, author={Li, Zheng and Liu, Yuxuan and Hossain, Oindrila and Paul, Rajesh and Yao, Shanshan and Wu, Shuang and Ristaino, Jean B. and Zhu, Yong and Wei, Qingshan}, year={2021}, month={Jul}, pages={2553–2570} } @article{paul_ostermann_wei_2020, title={Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases}, volume={169}, ISSN={["1873-4235"]}, DOI={10.1016/j.bios.2020.112592}, abstractNote={Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.}, journal={BIOSENSORS & BIOELECTRONICS}, author={Paul, Rajesh and Ostermann, Emily and Wei, Qingshan}, year={2020}, month={Dec} } @misc{li_yu_paul_fan_yang_wei_2020, title={Agricultural nanodiagnostics for plant diseases: recent advances and challenges}, volume={2}, ISSN={["2516-0230"]}, url={https://doi.org/10.1039/C9NA00724E}, DOI={10.1039/c9na00724e}, abstractNote={Engineered nanomaterials integrated with molecular assays or miniature sensing devices formed a promising nanodiagnostic tool box for plant diseases.}, number={8}, journal={NANOSCALE ADVANCES}, publisher={Royal Society of Chemistry (RSC)}, author={Li, Zheng and Yu, Tao and Paul, Rajesh and Fan, Jingyuan and Yang, Yuming and Wei, Qingshan}, year={2020}, month={Aug}, pages={3083–3094} } @article{ristaino_saville_paul_cooper_wei_2020, title={Detection of Phytophthora infestans by Loop-Mediated Isothermal Amplification, Real-Time LAMP, and Droplet Digital PCR}, volume={104}, ISSN={["1943-7692"]}, DOI={10.1094/PDIS-06-19-1186-RE}, abstractNote={ Phytophthora infestans is the causal agent of potato late blight, a devastating disease of tomato and potato and a threat to global food security. Early detection and intervention is essential for effective management of the pathogen. We developed a loop-mediated isothermal amplification (LAMP) assay for P. infestans and compared this assay to conventional PCR, real-time LAMP, and droplet digital PCR for detection of P. infestans. The LAMP assay was specific for P. infestans on potato and tomato and did not amplify other potato- or tomato-infecting Phytophthora species or other fungal and bacterial pathogens that infect potato and tomato. The detection threshold for SYBR Green LAMP and real-time LAMP read with hydroxynaphthol blue and EvaGreen was 1 pg/µl. In contrast, detection by conventional PCR was 10 pg/µl. Droplet digital PCR had the lowest detection threshold (100 fg/µl). We adapted the LAMP assay using SYBR Green and a mobile reader (mReader) for use in the field. Detection limits were 584 fg/µl for SYBR Green LAMP read on the mReader, which was more sensitive than visualization with the human eye. The mobile platform records geospatial coordinates and data from positive pathogen detections can be directly uploaded to a cloud database. Data can then be integrated into disease surveillance networks. This system will be useful for real-time detection of P. infestans and will improve the timeliness of reports into surveillance systems such as USABlight or EuroBlight. }, number={3}, journal={PLANT DISEASE}, author={Ristaino, Jean B. and Saville, Amanda C. and Paul, Rajesh and Cooper, Donald C. and Wei, Qingshan}, year={2020}, month={Mar}, pages={708–716} } @article{paul_saville_hansel_ye_ball_williams_chang_chen_gu_ristaino_et al._2019, title={Extraction of Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases}, volume={13}, ISSN={1936-0851 1936-086X}, url={http://dx.doi.org/10.1021/acsnano.9b00193}, DOI={10.1021/acsnano.9b00193}, abstractNote={In-field molecular diagnosis of plant diseases via nucleic acid amplification is currently limited by cumbersome protocols for extracting and isolating pathogenic DNA from plant tissues. To address this challenge, a rapid plant DNA extraction method was developed using a disposable polymeric microneedle (MN) patch. By applying MN patches on plant leaves, amplification-assay-ready DNA can be extracted within a minute from different plant species. MN-extracted DNA was used for direct polymerase chain reaction amplification of plant plastid DNA without purification. Furthermore, using this patch device, extraction of plant pathogen DNA ( Phytophthora infestans) from both laboratory-inoculated and field-infected leaf samples was performed for detection of late blight disease in tomato. MN extraction achieved 100% detection rate of late blight infections for samples after 3 days of inoculation when compared to the conventional gold standard cetyltrimethylammonium bromide (CTAB)-based DNA extraction method and 100% detection rate for all blind field samples tested. This simple, cell-lysis-free, and purification-free DNA extraction method could be a transformative approach to facilitate rapid sample preparation for molecular diagnosis of various plant diseases directly in the field.}, number={6}, journal={ACS Nano}, publisher={American Chemical Society (ACS)}, author={Paul, Rajesh and Saville, Amanda C. and Hansel, Jeana C. and Ye, Yanqi and Ball, Carmin and Williams, Alyssa and Chang, Xinyuan and Chen, Guojun and Gu, Zhen and Ristaino, Jean B. and et al.}, year={2019}, month={Jun}, pages={6540–6549} }